LF:BOMA0222p Mathematics II-lec. - Course Information
BOMA0222p Mathematics II - lecture
Faculty of Medicinespring 2022
- Extent and Intensity
- 2/0/0. 3 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Lenka Přibylová, Ph.D. (seminar tutor), RNDr. Veronika Eclerová, Ph.D. (deputy)
- Guaranteed by
- doc. RNDr. Lenka Přibylová, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Contact Person: Lenka Herníková
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 14. 2. to Mon 23. 5. Mon 12:00–13:40 M2,01021
- Prerequisites
- BOMA0121c Mathematics I-p
BOMA0121c - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Optics and Optometry (programme LF, B-OPOP)
- Optics and Optometry (programme LF, B-SZ) (2)
- Course objectives
- At the end of the course students should be able to understand basic concepts and theory of differential and integral calculus of functions of one real variable and some parts of differential and integral calculus of functions of more than one variable. The course BOMA0222c (practice) belongs to this lecture.
- Learning outcomes
- At the end of the course students should be able to understand basic concepts and theory of differential and integral calculus of functions of one real variable and some parts of differential and integral calculus of functions of more than one variable. The course BOMA0222c (practice) belongs to this lecture.
- Syllabus
- Differential calculus in one real variable. Derivative and its geometrical meaning. Extrems, inflex points, differential, l'Hospital's rule. Graphs of functions. Taylor polynomial. Integral calculus in one variable. Primitive function, basic formulas. Per partes and substitution methods. Riemann integral and its geometric applications. Infinite integral. Differential calculus in two real variables. Basic ideas, domain of definition, graph, limit and continuity. Partial derivatives, tangent plane and differential. Local extremes. Integral calculus in two real variables. Double integral, Fubini's theorem, transformation to polar coordinates. Geometric applications of double integrals.
- Literature
- PŘIBYLOVÁ, Lenka and Robert MAŘÍK. Matematika I. a II. Elportál. Brno: Masarykova univerzita, 2007. ISSN 1802-128X. URL info
- http://www.math.muni.cz/~pribylova/prednaska.pdf
- DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
- NOVÁK, Vítězslav. Integrální počet v R. 3., přepracované vyd. Brno: Masarykova univerzita, 2001, 85 pp. ISBN 80-210-2720-7. info
- DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vyd. 2. přeprac. Brno: Masarykova univerzita, 1999, iv, 143. ISBN 8021020520. info
- SIKORSKI, Roman. Diferenciální a integrální počet : funkce více proměnných. Translated by Ilja Černý. 2., změn. a dopl. vyd., Vyd. Praha: Academia, 1973, 495 s. URL info
- Teaching methods
- lectures
- Assessment methods
- written and oral exam
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on the extent and intensity of the course: 30. - Listed among pre-requisites of other courses
- Teacher's information
- https://is.muni.cz/auth/el/med/jaro2022/BOMA0222p/index.qwarp
- Enrolment Statistics (spring 2022, recent)
- Permalink: https://is.muni.cz/course/med/spring2022/BOMA0222p