G4021 Igneous and metamorphic petrology (II)

Faculty of Science
Autumn 2012
Extent and Intensity
2/0. 3 credit(s). Type of Completion: graded credit.
Teacher(s)
prof. RNDr. Jaromír Leichmann, Dr. rer. nat. (lecturer)
Mgr. David Buriánek, Ph.D. (lecturer)
prof. RNDr. Milan Novák, CSc. (lecturer)
Guaranteed by
doc. RNDr. Rostislav Melichar, Dr.
Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Contact Person: doc. Mgr. Martin Ivanov, Dr.
Supplier department: Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Timetable
Mon 8:00–9:50 Bp1,01007
Prerequisites
( G3021k Petrology I || G3021 Petrology I ) && ( (!(PROGRAM(B-GE)||PROGRAM(N-GE)||PROGRAM(D-GE4)||PROGRAM(D-GE)||PROGRAM(C-CV))) || (NOW( G0101 Occupational healt and safety )&&NOW( C7777 Handling chemicals )))
The course can be attended only after passing Petrology I. The knowledge of the subject matter is necessary for successful managing of related subjects of magister study.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 36 student(s).
Current registration and enrolment status: enrolled: 0/36, only registered: 0/36, only registered with preference (fields directly associated with the programme): 0/36
fields of study / plans the course is directly associated with
there are 14 fields of study the course is directly associated with, display
Course objectives
At the end of this course, students should be able to: understand problems of genesis of the most important groups of rocks.
Syllabus
  • Igneous rocks:
  • Petrotectonic assemblages. Types of crust, continental and oceanic crust, origin of magmas, conditions of ascent and position of magmas, creation of rocks. Chemical restrictions, sources of primary magmas, ascent velocity in lithosphere. Experimental data -petrogenetic meaning of minerals, latice parameters and mineral colours as the source of information of the conditions of mineral creation in rocks, distribution of elements between coexisted minerals, gaseous-liquid inclusions, double-feldspar geothermometer, distribution of Mg, Fe and Ca, Al among the rock forming minerals. Trace elements of igneous rocks and their petrogenetic meaning. Contents of isotopes and the their interpretation.
  • Basalts and ultramafic rocks. Types of basalts and their derivatives, basalt occurence: rift volcanism, volcanism of subduction zones, intra-plate volcanicm. Mineral composition, structures and chemical composition of basalts. Ultramafic igneous rocks. Rhyolites and andesites. Types and derivatives of rhyolites and andesites, occurence of rhyolites: hot spots, rifts, transform and tripple faults, volcanic arcs. Occurence of andesites and corresponding rocks. Mineral and chemical composition, structures of andesites. Ultramafic and mafic complexes and corresponding rocks. Shapes of ultramific and ultramafic-mafic rock bodies. Mineral and chemical composition, structures of ultramafic and mafic complexes. Stratified ultramafic complexes, ophiolite complexes, appinite type of ultramafic rocks.
  • Granitoidal rock. Composition of granitoidal rocks. Structural and chemical variability. Petrogenesis of granitoidal rocks. Occurence of granitoidal rocks, their tectonic meaning and typology. Formation of granitoidal rocks (fractional crystallization, hybridization, granitization).
  • Sedimentary rocks:
  • Rock-forming minerals of sedimentary rocks - origin and petrogenesis: clay minerals, silicon oxides and hydroxides, feldspars, carbonates, phosphates, oxides, Fe, Mn, Al-hydroxides, sulfates, chlorides, iron sulfides. Organic matters. Rock-forming organism.
  • Origin and evolution of sedimentary structures: Textural characteristic (distribution of grain size, the shapes of sedimentary particles, surface texture of sedimentary particles, matrix, cements and cementation, ooids and pisoids, spherulitic texture, primary and secondary porosity, permeability). Textural classification. Structural classification of sedimentary rocks. Outer and inner structures.
  • Origin of sedimentary rocks: weathering processes (mechanical and chemical degradation of rocks, sedimentary cycle, soil formation, erosion. Transport (medium motion, grain flows, water transport, eolian transport, glacial and gravitational processes, orientation of grains). Sedimentation, types of deposition environments. Influence of the tectonic and climatic conditions, sedimentation velocity. Maturity of sediments. Diagenesis of sediments, diagenetic evolution (syndiagenesis, anadiagenesis, epidiagenesis), main phases arising during lithogenesis, geophysical and geochemical conditions of diagenesis, Diagenetic metasomatism. Anchimetamorphism.
  • Recent sediments.
  • Metamorphic rocks
  • Individual types of metamorphic rocks will be treated with emphasis on the geotectonic setting of their genesis. Methods of metamorphic rocks studies aiming at determination of P-T conditions of their formation will be presented. This will include analyses of relationships between metamorphism and deformation, formation and use of mineral zoning, geothermobarometry, geochronology, petrogenetic grids and metamorphic P-T paths. Examples from the Bohemian Massif will be presented.
  • 1. Metapelites, quartzofeldspathic rocks (orthogneisses)
  • 2. Metabasic and mafic rocks.
  • 3. Metacarbonates, calc-silicate rocks .
  • 4. High temperature and ultra-high temperature metamorphism, low, medium and high pressure granulites, anatexis, contact metamorphism.
Literature
  • HALL, Anthony. Igneous petrology. 2nd ed. Essex: Longman Group, 1996, xiv, 551. ISBN 0582230802. info
  • KONOPÁSEK, Jiří. Metamorfní petrologie. 1. vyd. Praha: Karolinum, 1998, 241 s. ISBN 8071846686. info
Teaching methods
lecture
Assessment methods
Lectures, written tests
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught once in two years.
Information on the per-term frequency of the course: Bude otevřen v podzimním semestru 2012/2013.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2010 - only for the accreditation, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2010, Autumn 2011 - acreditation, Autumn 2014, Autumn 2016, Autumn 2018, Autumn 2020, Autumn 2022, Autumn 2024.
  • Enrolment Statistics (Autumn 2012, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2012/G4021