PřF:GA811 Colloids in environment - Course Information
GA811 Colloids in environment
Faculty of ScienceAutumn 2019
- Extent and Intensity
- 1/0/0. 1 credit(s). Type of Completion: k (colloquium).
- Teacher(s)
- doc. Ing. Jiří Faimon, Dr. (lecturer)
- Guaranteed by
- doc. Ing. Jiří Faimon, Dr.
Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Contact Person: doc. Mgr. Martin Ivanov, Dr.
Supplier department: Department of Geological Sciences – Earth Sciences Section – Faculty of Science - Prerequisites (in Czech)
- ! GA810 Geochemist. of colloid systems && ( (!(PROGRAM(B-GE)||PROGRAM(N-GE)||PROGRAM(D-GE)||PROGRAM(D-GE4)||PROGRAM(C-CV))) || (NOW( G0101 Occupational healt and safety )&&NOW( C7777 Handling chemicals )))
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 32 fields of study the course is directly associated with, display
- Course objectives
- The lectures focus the problem of colloids in environment. There are summarized definitions, behavior, and properties of colloid systems. Thermodynamics of surfaces and stabilization of colloid particles are discussed. Based on modeling of aggregation, potential barrier, primary minimum, and secondary minimum are demonstrated on potential curves. Colloid formation is shown on the examples of the condensation of aqueous alumina and silica. A disintegration mechanism of colloid formation is also mentioned. High accent is devoted to the transport of colloids in water, air, and porous media. The behavior of colloids in environment is focused in detail. There are discussed the sorption of element on colloid particle and the function of colloids as pollutant "carriers" a "scavengers". Finally, the experimental methods of study of colloids are presented.
- Learning outcomes
- Upon completion of the course, students will be able to apply the knowledge about properties / behavior of colloids at:
- sampling of water / atmosphere and elimination of their influence in the analysis of dissolved components
- interpretation of results in the field of hydrogeochemistry and atmogeochemistry
- assessing their impacts after changing external conditions by anthropogenic or natural influences. - Syllabus
- Colloid systems: Classification, behavior, properties, stability. Particles, dispersing medium. Aerosols, colloidal solutions, gels. Hydrophilic and hydrophobic surfaces. Phase colloids, molecular colloids. Thermodynamics of colloids Formation of colloids: Condensation processes, origin and role of supersaturation, nucleation, formation of solids, kinetic factors. Disintegration processes. Role of surface energy. Stability of colloid system: Thermodynamics of surfaces, stabilization of colloids by surface charge and by polymers. Electric double-layer. Influence of ionic strength. Brackish waters. Particle aggregation, diffusive and reactive control. Modeling of stability: Repulsion and attractive forces. Curves of potential energy. Potential barrier, primary and secondary minima. Polymerization in solutions: Monomers, supersaturation, polymers of alumina and silica, growing of particles, modeling. Natural colloids: Metal oxides and hydroxides. Sulfates, carbonates, phosphates, fluorides, arsenates. Clay minerals. Organic polymers. Transport of colloids: Transport in atmosphere, transport by water, transport in porous media. Rates of transport, comparing with dissolved species, column experiments with colloids and tritiated water. Colloids in environment: Sorption behavior (surface area, trace metal sorption, carriers and scavengers of pollutants). Colloids in granitic ground waters (major and trace elements). Soil colloids (precipitation, drainage, evaporation, formation of soil colloids). Estuarine and seawater colloids (mixing of two water types, aggregation in estuaries). Transport of radio-nuclides (Ru, Te, Cs isotopes). Atmospheric aerosols (behavior, composition, and sizes of atmospheric aerosol particles, speleo-aerosols, speleo-therapy). Colloids in hydrothermal processes (colloid behavior at higher temperatures). Methods of study of colloid systems: Methods of colloid isolation (ultra-filtration, ultra-filters, membranes, chromatographic gels, column chromatography, Gel-Filtration, Gel-Chromatography). Study after colloid particles separation (Scanning Electron Microscopy, Neutron Activation Analysis, Gas Chromatography). Study without separation (Thyndal's phenomenon, optical methods, spectrophotometry).
- Literature
- recommended literature
- YARIV, S. and H. CROSS. Geochemistry of colloid systems. Springer Verlag, 1979, 360 pp. ISBN 0387089802. info
- HIEMENZ, Paul C. and Raj RAJAGOPALAN. Principles of Colloid and Surface Chemistry. 3rd edition. Marcel Dekker, 1997, 650 pp. ISBN 0824793978. info
- ANDERSSON, P.S., D. PORCELLI, O. GUSTAFSSON, J. INGRI and G.J. WASSERBURG. The importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary. Geochimica et Cosmochimica Acta. Elsevier Pergamon, 2001, vol. 65, No 1, p. 13-24. ISSN 0016-7037. info
- Teaching methods
- lectures
- Assessment methods
- written test
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught once in two years.
Information on the per-term frequency of the course: Bude otevřen v podzimním semestru 2019/2020.
The course is taught: in blocks.
- Enrolment Statistics (Autumn 2019, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2019/GA811