ESF:MPE_BAAN Bayesiánská analýza - Informace o předmětu
MPE_BAAN Bayesiánská analýza
Ekonomicko-správní fakultapodzim 2020
- Rozsah
- 2/2/0. 10 kr. Ukončení: zk.
- Vyučující
- doc. Ing. Daniel Němec, Ph.D. (přednášející)
prof. Ing. Osvald Vašíček, CSc. (přednášející)
doc. Ing. Daniel Němec, Ph.D. (cvičící)
Mgr. Jakub Chalmovianský, Ph.D. (přednášející)
Mgr. Jakub Chalmovianský, Ph.D. (cvičící)
Ing. Mgr. Vlastimil Reichel, Ph.D. (pomocník) - Garance
- doc. Ing. Daniel Němec, Ph.D.
Katedra ekonomie – Ekonomicko-správní fakulta
Kontaktní osoba: Mgr. Jarmila Šveňhová
Dodavatelské pracoviště: Katedra ekonomie – Ekonomicko-správní fakulta - Rozvrh
- St 14:00–15:50 P106
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- základy maticové algebry; základy pravděpodobnosti a matematické statistiky, popřípadě základy lineární regrese resp. ekonometrie - možnost souběžné návštěvy kurzu BPE_ZAEK Základy ekonometrie (není však podmínkou); základní znalosti práce s Matlabem (či podobným výpočetním nástrojem) mohou být výhodou - doporučuji souběžné zapsání volitelného kurzu BPM_MATL Základy práce se systémem MATLAB (zejména v případě nulových zkušeností)
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
Jiné omezení: Předmět si nezapisují studenti, kteří absolvovali PMREGR. - Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Účelem předmětu je seznámit posluchače s bayesovským přístupem ke kvantitativní analýze ekonomického systému reprezentovaným ekonometrickým modelem. V ekonomické teorii hrají bayesovské metody důležitou roli při modelování chování subjektů či systémů v podmínkách nejistoty. Ekonomičtí agenti obvykle maximalizují svou účelovou funkci na základě dostupných informací a při přísunu informací nových zlepší svá rozhodnutí na základě Bayesova pravidla. Bayesovská ekonometrie je tedy v principu založena na aplikaci několika jednoduchých zákonů pravděpodobnosti, zejména pak Bayesova pravidla, pomocí kterého jsou naše prvotní úvahy o vlastnostech ekonomického systému (reprezentované např. neznámými parametry) konfrontovány se skutečným pozorováním, abychom tak získali nový (podmíněný) pohled na jev, který nás zajímá (např. ony neznámé parametry).
V rámci předmětu tak budou objasněny postupy bayesovské kvantifikace ekonometrického modelu spočívající v odhadu parametrů modelu, v porovnání různých modelů a ve využití modelů pro ekonomickou analýzu a prognózování. Postupy budou prezentovány jak na umělých datech (pro osvojení si teoretických principů a vlastností simulačních metod, které jsou v rámci bayesovské ekonometrie využívány), tak i na reálných ekonomických systémech a datech s ukázkami praktického využití modelu jako nástroje ekonomického rozhodování. - Výstupy z učení
- Na konci tohoto kurzu bude student schopen:
porozumět a vysvětlit principy bayesiánské analýzy reálných dat;
vhodně formulovat a správně identifikovat (nejen) ekonometrické modely na základě stanoveného problému;
orientovat se v odborných textech využívajících bayesovský přístup k empirické analýze zvolené problematiky;
věcně interpretovat výsledky bayesovské analýzy při řešení reálných (nejen ekonomických) problémů;
být kompetentní v používání Matlabu a jiných ekonometrických balíčků. - Osnova
- Principy a pojmy bayesovské ekonometrie.
- Normální lineární regresní model s přirozeně konjugovanou apriorní hustotou (věrohodnostní funkce, apriorní hustota, posteriorní hustota, porovnání modelů, předpověď, Monte Carlo integrace).
- Normální lineární regresní model s jinými apriorními hustotami (Gibbsův vzorkovač, MCMC diagnostiky, Savageho-Dickeyeho poměr hustot).
- Nelineární regresní model (Metropolis-Hastings algoritmus, metoda Gelfanda a Deye).
- Lineární regresní model s obecnou kovarianční maticí náhodných složek (autokorelace a heteroskedasticita náhodných složek, model zdánlivě nesouvisejících regresí).
- Modely panelových dat (souhrnný model, modely individuálních vlivů, model náhodných koeficientů, Chibova metoda, analýza efektivity a model stochastických hranic).
- Úvod do časových řad: Stavové modely.
- Modely kvalitativní nebo omezené vysvětlované proměnné (jednorozměrné a multinomiální modely probit, tobit a logit).
- Flexibilní modely (bayesovská neparametrická a semiparametrická regrese, "směšování" normálních modelů).
- Bayesovské průměrování modelů. Další vybrané modely, metody a otázky bayesovské ekonometrie.
- Literatura
- povinná literatura
- KOOP, Gary. Bayesian econometrics. Chichester: Wiley, 2003, xi, 359. ISBN 0470845678. info
- KOOP, Gary, Dale J. POIRIER a Justin L. TOBIAS. Bayesian econometric methods. 1st ed. Cambridge: Cambridge University Press, 2007, xxi, 357. ISBN 9780521855716. info
- doporučená literatura
- LANCASTER, Tony. An introduction to modern Bayesian econometrics. 1st ed. Malden: Blackwell, 2004, xiv, 401. ISBN 9781405117203. info
- POIRIER, Dale J. Intermediate statistics and econometrics : a comparative approach. Cambridge, Mass.: MIT Press, 1995, xiv, 715. ISBN 0262161494. info
- BAUWENS, Luc, Michel LUBRANO a Jean-François RICHARD. Bayesian inference in dynamic econometric models. Oxford: Oxford University Press, 1999, xv, 350. ISBN 0198773137. info
- GEWEKE, John. Contemporary Bayesian econometrics and statistics. Hoboken, N.J.: John Wiley & Sons, 2005, xi, 300. ISBN 0471679321. info
- ZELLNER, Arnold. An introduction to Bayesian inference in econometrics. New York: John Wiley & Sons, 1971, xv, 431. ISBN 0471169374. info
- Výukové metody
- přednášky, diskuse v hodině, praktická cvičení v počítačové učebně, drilování
- Metody hodnocení
- závěrečný (skupinový) projekt, ústní zkouška
- Navazující předměty
- Informace učitele
- Jakékoli opisování, zaznamenávání nebo vynášení testů, používání nedovolených pomůcek jakož i komunikačních prostředků nebo jiné narušování objektivity zkoušky (zápočtu) bude považováno za nesplnění podmínek k ukončení předmětu a za hrubé porušení studijních předpisů. Následkem toho uzavře vyučující zkoušku (zápočet) hodnocením v ISu známkou "F" a děkan zahájí disciplinární řízení, jehož výsledkem může být až ukončení studia.
- Další komentáře
- Předmět je vyučován každoročně.
Přednášky jsou dostupné online a ze záznamu.
- Statistika zápisu (podzim 2020, nejnovější)
- Permalink: https://is.muni.cz/predmet/econ/podzim2020/MPE_BAAN