MPE_BAAN Bayesiánská analýza

Ekonomicko-správní fakulta
podzim 2023
Rozsah
2/2/0. 10 kr. Ukončení: zk.
Vyučující
doc. Ing. Daniel Němec, Ph.D. (přednášející)
doc. Ing. Daniel Němec, Ph.D. (cvičící)
Mgr. Jakub Chalmovianský, Ph.D. (pomocník)
Ing. Mgr. Vlastimil Reichel, Ph.D. (pomocník)
Garance
doc. Ing. Daniel Němec, Ph.D.
Katedra ekonomie – Ekonomicko-správní fakulta
Kontaktní osoba: Mgr. Jarmila Šveňhová
Dodavatelské pracoviště: Katedra ekonomie – Ekonomicko-správní fakulta
Rozvrh
St 14:00–15:50 P106, kromě St 20. 9., kromě St 8. 11.
  • Rozvrh seminárních/paralelních skupin:
MPE_BAAN/01: St 10:00–11:50 VT204, kromě St 20. 9., kromě St 8. 11., D. Němec
Předpoklady
základy maticové algebry; základy pravděpodobnosti a matematické statistiky, popřípadě základy lineární regrese resp. ekonometrie - možnost souběžné návštěvy kurzu BPE_ZAEK Základy ekonometrie (není však podmínkou); základní znalosti práce s Matlabem (či podobným výpočetním nástrojem) mohou být výhodou - doporučuji souběžné zapsání volitelného kurzu MPE_ZMAT Základy MATLABu, na který navazuje v jarním semstru MPE_MATL Matlab.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Jiné omezení: Předmět si nezapisují studenti, kteří absolvovali PMREGR.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Účelem předmětu je seznámit posluchače s bayesovským přístupem ke kvantitativní analýze ekonomického systému reprezentovaným ekonometrickým modelem. V ekonomické teorii hrají bayesovské metody důležitou roli při modelování chování subjektů či systémů v podmínkách nejistoty. Ekonomičtí agenti obvykle maximalizují svou účelovou funkci na základě dostupných informací a při přísunu informací nových zlepší svá rozhodnutí na základě Bayesova pravidla. Bayesovská ekonometrie je tedy v principu založena na aplikaci několika jednoduchých zákonů pravděpodobnosti, zejména pak Bayesova pravidla, pomocí kterého jsou naše prvotní úvahy o vlastnostech ekonomického systému (reprezentované např. neznámými parametry) konfrontovány se skutečným pozorováním, abychom tak získali nový (podmíněný) pohled na jev, který nás zajímá (např. ony neznámé parametry).
V rámci předmětu tak budou objasněny postupy bayesovské kvantifikace ekonometrického modelu spočívající v odhadu parametrů modelu, v porovnání různých modelů a ve využití modelů pro ekonomickou analýzu a prognózování. Postupy budou prezentovány jak na umělých datech (pro osvojení si teoretických principů a vlastností simulačních metod, které jsou v rámci bayesovské ekonometrie využívány), tak i na reálných ekonomických systémech a datech s ukázkami praktického využití modelu jako nástroje ekonomického rozhodování.
Výstupy z učení
Na konci tohoto kurzu bude student schopen:
porozumět a vysvětlit principy bayesiánské analýzy reálných dat;
vhodně formulovat a správně identifikovat (nejen) ekonometrické modely na základě stanoveného problému;
orientovat se v odborných textech využívajících bayesovský přístup k empirické analýze zvolené problematiky;
věcně interpretovat výsledky bayesovské analýzy při řešení reálných (nejen ekonomických) problémů;
být kompetentní v používání Matlabu a jiných ekonometrických balíčků.
Osnova
  • Principy a pojmy bayesovské ekonometrie.
  • Normální lineární regresní model s přirozeně konjugovanou apriorní hustotou (věrohodnostní funkce, apriorní hustota, posteriorní hustota, porovnání modelů, předpověď, Monte Carlo integrace).
  • Normální lineární regresní model s jinými apriorními hustotami (Gibbsův vzorkovač, MCMC diagnostiky, Savageho-Dickeyeho poměr hustot).
  • Nelineární regresní model (Metropolis-Hastings algoritmus, metoda Gelfanda a Deye).
  • Lineární regresní model s obecnou kovarianční maticí náhodných složek (autokorelace a heteroskedasticita náhodných složek, model zdánlivě nesouvisejících regresí).
  • Modely panelových dat (souhrnný model, modely individuálních vlivů, model náhodných koeficientů, Chibova metoda, analýza efektivity a model stochastických hranic).
  • Úvod do časových řad: Stavové modely.
  • Modely kvalitativní nebo omezené vysvětlované proměnné (jednorozměrné a multinomiální modely probit, tobit a logit).
  • Flexibilní modely (bayesovská neparametrická a semiparametrická regrese, "směšování" normálních modelů).
  • Bayesovské průměrování modelů. Další vybrané modely, metody a otázky bayesovské ekonometrie.
Literatura
    povinná literatura
  • KOOP, Gary. Bayesian econometrics. Chichester: Wiley, 2003, xi, 359. ISBN 0470845678. info
  • LAMBERT, Ben. A student's guide to Bayesian statistics. First published. Los Angeles: Sage, 2018, xx, 498. ISBN 9781473916364. info
  • KOOP, Gary, Dale J. POIRIER a Justin L. TOBIAS. Bayesian econometric methods. 1st ed. Cambridge: Cambridge University Press, 2007, xxi, 357. ISBN 9780521855716. info
    doporučená literatura
  • LANCASTER, Tony. An introduction to modern Bayesian econometrics. 1st ed. Malden: Blackwell, 2004, xiv, 401. ISBN 9781405117203. info
  • KRUSCHKE, John K. Doing Bayesian data analysis : a tutorial with R, JAGS and Stan. Edition 2. Amsterdam: Elsevier, 2015, xii, 759. ISBN 9780124058880. info
Výukové metody
přednášky, diskuse v hodině, praktická cvičení v počítačové učebně, drilování
Metody hodnocení
aktivita na semináři a dva semestrální domácí úkoly (50 % závěrečného hodnocení), závěrečný (skupinový) projekt a ústní zkouška v podobě obhajoby projektu (50 % závěrečného hodnocení); podrobnosti k ukončení předmětu pro studenty vyjíždějící do zahraničí jsou obsaženy v Organizačních pokynech (viz studijní materiály v ISu)
Navazující předměty
Informace učitele
Jakékoli opisování, zaznamenávání nebo vynášení testů, používání nedovolených pomůcek jakož i komunikačních prostředků nebo jiné narušování objektivity zkoušky (zápočtu) bude považováno za nesplnění podmínek k ukončení předmětu a za hrubé porušení studijních předpisů. Následkem toho uzavře vyučující zkoušku (zápočet) hodnocením v ISu známkou "F" a děkan zahájí disciplinární řízení, jehož výsledkem může být až ukončení studia.
Další komentáře
Předmět je vyučován každoročně.
Přednášky jsou dostupné online a ze záznamu.
Předmět je zařazen také v obdobích podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2024.