MB202 Diferenciální a integrální počet B

Fakulta informatiky
jaro 2019
Rozsah
4/2. 6 kr. (plus ukončení). Ukončení: zk.
Vyučující
doc. RNDr. Michal Veselý, Ph.D. (přednášející)
Mgr. Jakub Juránek, Ph.D. (cvičící)
Mgr. Jiřina Šišoláková, Ph.D. (pomocník)
prof. Mgr. Petr Hasil, Ph.D. (náhr. zkoušející)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Dodavatelské pracoviště: Přírodovědecká fakulta
Rozvrh
St 12:00–15:50 A217
  • Rozvrh seminárních/paralelních skupin:
MB202/01: Út 19. 2. až Út 14. 5. Út 12:00–13:50 B204, J. Juránek
MB202/02: Út 19. 2. až Út 14. 5. Út 14:00–15:50 B204, J. Juránek
Předpoklady
!NOW( MB102 Dif. a integrální počet ) && ! MB102 Dif. a integrální počet
Středoškolská matematika.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Druhá část bloku čtyř semestrů matematiky v rozšířené verzi. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky. V tomto semestru se jedná o základní úlohy integrálního a diferenciálního počtu, včetně souvislostí numerických a aplikačních. Studenti budou schopni pracovat prakticky i teoreticky s derivací a integrálem (neurčitým i určitým) a používat je k řešení různých aplikačních úloh a k analýze chování funkcí jedné reálné proměnné. Studenti budou rozumět teorii a použití nekonečných číselných a mocninných řad, seznámí se i s využitím integrálních transformací.
Výstupy z učení
Studenti budou po absolvování předmětu schopni:
pracovat prakticky i teoreticky s derivací a integrálem (neurčitým i určitým);
používat diferenciální a integrální kalkulus k řešení různých aplikačních úloh;
analyzovat chování funkcí jedné reálné proměnné;
rozumět teorii a použití nekonečných číselných a mocninných řad;
využívat některé integrální transformace a Fourierovy řady.
Osnova
  • 1. Zřízení ZOO – interpolace polynomy a spliny; axiomatika reálných čísel; topologie reálných a komplexních čísel; posloupnosti skalárů a jejich hromadné body; limity funkcí, spojitost a derivace; vlastnosti derivace; zavedení elementárních funkcí pomocí spojitosti; mocninné řady; goniometrické funkce;
  • 2. Diferenciální a integrální počet – derivace vyšších řádů a Taylorův rozvoj; průběh funkce (optimalizace s jedním parametrem); diferenciál; křivost křivky, analytické a hladké funkce; Newtonův a Riemannův integrál; obsahy, délka, objemy; nevlastní integrály; posloupnosti a řady funkcí; důsledky stejnoměrná konvergence; Laurantovy řady v komplexní proměnné; využití Taylorova rozvoje pro numerickou derivaci a integrování; poznámky k silnějším metodám integrace (Stieltjes-Riemann, Kurzweil)
  • 3. Spojité modely – obecné ortogonální systémy funkcí (jako nástroj pro aproximace funkcí); Fourierovy řady (včetně diskrétní verze); poznámky k waveletům, konvoluce (včetně diskrétní verze); integrální transformace; spojitá a diskrétní Fourierova transformace
Literatura
    doporučená literatura
  • SLOVÁK, Jan, Martin PANÁK a Michal BULANT. Matematika drsně a svižně. 1. vyd. Brno: Masarykova univerzita, 2013, 773 s. ISBN 978-80-210-6307-5. Dostupné z: https://dx.doi.org/10.5817/CZ.MUNI.O210-6308-2013. Základní učebnice matematiky pro vysokoškolské studium info
  • RILEY, K.F., M.P. HOBSON a S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004, 1232 s. ISBN 0 521 89067 5. info
  • Matematická analýza pro fyziky. Edited by Pavel Čihák. Vyd. 1. Praha: Matfyzpress, 2001, v, 320 s. ISBN 80-85863-65-0. info
    neurčeno
  • DOŠLÁ, Zuzana a Vítězslav NOVÁK. Nekonečné řady. Vyd. 1. Brno: Masarykova univerzita, 1998, 113 s. ISBN 8021019492. info
Výukové metody
Přednášky kombinující teorii a řešené příklady. Seminární skupiny zaměřené na zvládnutí početních úloh.
Metody hodnocení
Čtyřhodinová přednáška a dvouhodinové cvičení. Zakončení písemnou zkouškou a ústní zkouškou. Výsledky ze cvičení, zadávaných úloh a průběžných písemek se částečně přenášejí do hodnocení zkoušky.
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/fi/jaro2019/MB202