MB103 Matematika III

Fakulta informatiky
podzim 2007
Rozsah
2/2. 4 kr. (plus ukončení). Ukončení: zk.
Vyučující
Mgr. Michal Bulant, Ph.D. (přednášející)
Ing. Mgr. Dávid Dereník (cvičící)
RNDr. Jiří Glozar (cvičící)
prof. Mgr. Petr Hasil, Ph.D. (cvičící)
Mgr. Ing. Eva Pekárková, Ph.D. (cvičící)
Mgr. Veronika Trnková (cvičící)
Mgr. Jiří Vítovec, Ph.D. (cvičící)
doc. Mgr. Petr Zemánek, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Slovák, DrSc.
Fakulta informatiky
Rozvrh
Út 16:00–17:50 D1, St 14:00–15:50 D3, Pá 9:00–10:50 D3
  • Rozvrh seminárních/paralelních skupin:
MB103/01: Po 8:00–9:50 B011, J. Vítovec
MB103/02: Po 10:00–11:50 B011, J. Vítovec
MB103/03: St 16:00–17:50 B003, P. Zemánek
MB103/04: St 18:00–19:50 B003, P. Zemánek
MB103/05: Pá 11:00–12:50 B003, E. Pekárková
MB103/06: Pá 13:00–14:50 B003, E. Pekárková
MB103/07: St 8:00–9:50 B003, V. Trnková
MB103/08: St 8:00–9:50 B007, P. Hasil
MB103/09: Po 18:00–19:50 B410, V. Trnková
Předpoklady
Doporučuje se znalost elementárních funkcí, práce s polynomy, racionální lomené funkce. Dále pak základy maticového počtu, práce s lineárními zobrazeními a vektorovými prostory a základními nástroji diferencování a integrování v jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Třetí část bloku matematika I-IV. Stručný obsah celého bloku viz Matematika I, MB101.
Osnova
  • Diferenciální a integrální počet ve více proměnných: parciální derivace, integrální počet ve více proměnných, vybrané aplikace diferenciálního a integrálního počtu, systémy diferenciálních rovnic, přibližná řešení. Kombinatorické metody (diskrétní matematika), rovinné grafy, barvení grafu, Eulerova kružnice, stromy a minimální kostry, toky a sítě, grafové hry a další vybrané aplikace.
Literatura
  • RILEY, K. F., M. P. HOBSON a S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří a Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan a Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Záložky
https://is.muni.cz/ln/tag/FI:MB103!
Metody hodnocení
Dvouhodinová přednáška a dvouhodinová přednášená ukázková řešení s řešením vzorových příkladů. Povinná je docházka do cvičení, součástí zkoušky budou 2-3 průběžně psané písemky. Zakončení písemnou zkouškou na konci semestru.
Navazující předměty
Informace učitele
Podmínkou pro přístup ke zkoušce je docházka do cvičení a úspěšné zvládnutí vnitrosemestrálních písemek. Požadavkem k úspěšnému vykonání zkoušky je teoretické i praktické zvládnutí látky.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019.