F2422 Základní matematické metody ve fyzice 2

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
3/0. 3 kr. (plus 2 za zk). Ukončení: zk.
Vyučující
Mgr. Lenka Czudková, Ph.D. (přednášející)
Garance
prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D.
Dodavatelské pracoviště: Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Předpoklady
Diferenciální a integrální počet funkcí jedné proměnné, teorie i kalkul.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí více proměnných, vektorová analýza, plošný integrál, integrální věty) a algebry (základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace. Hlavní cíle předmětu jsou: získání rychlého přehledu o základních pojmech z oblasti matematické analýzy. Získání rutinních početních dovedností nezbytných pro bakalářský kurs obecné fyziky je předmětem souvisejícího početního praktika F2423.
Osnova
  • 1. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 2. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
  • 3. Plochy v trojrozměrném euklidovském prostoru: parametrizace, kartézské rovnice.
  • 4. Plošný integrál prvého druhu, fyzikální charakteristiky plošných útvarů (hmotnost, těžiště, moment setrvačnosti).
  • 5. Plošný integrál druhého druhu, fyzikální aplikace (tok vektorového pole plochou).
  • 6. Praktické výpočty plošných integrálů.
  • 7. Integrální věty.
  • 8. Fyzikální aplikace integrálu a integrálních vět: Integrální a difererenciální tvar Maxwellových rovnic.
  • 9. Aplikace integrálních vět v mechanice kontinua.
  • 10. Řady funkcí: Taylorova řada, aplikace (odhady).
  • 11. Řady funkcí: Fourierova řada, aplikace (Fourierova analýza signálu).
  • 12. Základy tenzorové algebry.
Literatura
  • KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
Výukové metody
Přednáška: teoretická výuka s ukázkovými příklady.
Metody hodnocení
Písemná a ústní zkouška.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.