M3121 Pravděpodobnost a statistika I

Přírodovědecká fakulta
podzim 2011
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: z.
Vyučující
prof. RNDr. Gejza Wimmer, DrSc. (přednášející)
Mgr. Jakub Čupera, Ph.D. (cvičící)
doc. Mgr. Jan Koláček, Ph.D. (cvičící)
Mgr. Lenka Zavadilová, Ph.D. (cvičící)
Garance
prof. RNDr. Gejza Wimmer, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 10:00–11:50 M1,01017, St 12:00–13:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M3121/01: St 10:00–11:50 M4,01024, L. Zavadilová
M3121/02: Út 16:00–17:50 M2,01021, J. Čupera
M3121/03: St 8:00–9:50 M5,01013, L. Zavadilová
M3121/04: Út 18:00–19:50 M2,01021, J. Čupera
M3121/05: Po 10:00–11:50 M2,01021, J. Koláček
Předpoklady
M2100 Matematická analýza II || FI:MB001 Matematická analýza II
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje axiomatický přístup k teorii pravděpodobnosti, náhodné veličiny a náhodné vektory, rozdělení pravděpodobností, charakteristiky rozdělení pravděpodobností a závěr kurzu je věnován zákonům velkých čísel a centrální limitní větě. Po absolvování tohoto kurzu měl by student být schopen porozumět zakladním pojmům z teorie pravděpodobnosti a tak být připraven k návaznému studiu teoretických základů statistické indukce.
Osnova
  • Základy pravděpodobnosti: axiomatická definice pravděpodobnosti, pravděpodobnostní prostor, podmíněná pravděpodobnost, nezávislost. Náhodné veličiny: borelovské funkce, definice náhodné veličiny, distribuční funkce, diskrétní a absolutně spojitá rozdělení pravděpodobností, pravděpodobnostní funkce a hustota, příklady spojitých a diskrétních náhodných veličin, rozdělení transformovaných náhodných veličin. Náhodné vektory: sdružená rodělení náhodných veličin, nezávislost, příklady mnohorozměrných rozdělení (n-rozměrné normální a multinomické rozdělení), rozdělení součtu a podílu, rozdělení odvozená od normálního, marginální rozdělení. Charakteristiky: střední hodnota, rozptyl.
Literatura
  • Ash, R.B. and Doléans-Dade C.A. Probability and measure theory. Academic Press. San Diego.2000
  • MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
  • Karr, A.F. Probability. Springer. 1992
  • Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
Výukové metody
Přednáška: teoretická výuka kombinovaná s praktickými příklady Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení jednoduchých úloh i úloh komplexního charakteru, domácí úlohy
Metody hodnocení
Výuka: přednáška, klasické cvičení. Aktívní práce na cvičeních. 2 písemné testy.
Navazující předměty
Informace učitele
K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 2010 - akreditace, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2023, podzim 2024.