PřF:M3121 Pravděpodobnost a statistika I - Informace o předmětu
M3121 Pravděpodobnost a statistika I
Přírodovědecká fakultapodzim 2019
- Rozsah
- 2/2/0. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: z.
- Vyučující
- doc. Mgr. Jan Koláček, Ph.D. (přednášející)
Mgr. Tereza Juchelková (cvičící)
Mgr. Andrea Kraus, M.Sc., Ph.D. (cvičící)
RNDr. Radim Navrátil, Ph.D. (cvičící) - Garance
- doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 10:00–11:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M3121/02: Út 8:00–9:50 M2,01021, R. Navrátil
M3121/03: Po 8:00–9:50 M5,01013, T. Juchelková, A. Kraus - Předpoklady
- M2100 Matematická analýza II || FI:MB001 Matematická analýza II || FI:MB102 Dif. a integrální počet || M2B02 Difer. a integr. počet II || FI:MB202 Dif. a integrální počet B
Diferenciální a integrální počet funkcí n reálných promenných. Základy lineární algebry. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika pro víceoborové studium (program PřF, B-MA)
- Finanční a pojistná matematika (program PřF, B-MA)
- Matematická biologie (program PřF, B-EXB)
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Základní kurz pravděpodobnosti a matematické statistiky, výchozí pro další teoretické i aplikačně zaměřené stochastické předměty. Kurz obsahuje axiomatický přístup k teorii pravděpodobnosti, náhodné veličiny a náhodné vektory, rozdělení pravděpodobností, charakteristiky rozdělení pravděpodobností a závěr kurzu je věnován zákonům velkých čísel a centrální limitní větě.
- Výstupy z učení
- Po absolvování tohoto kurzu bude student schopen porozumět základním pojmům z teorie pravděpodobnosti; definovat náhodnou veličinu a náhodný vektor; charakterizovat základní typy rozdělení pravděpodobnosti; modelovat pravděpodobnostní rozdělení v konkrétních případech; bude připraven k návaznému studiu teoretických základů statistické indukce.
- Osnova
- Základy pravděpodobnosti: axiomatická definice pravděpodobnosti, pravděpodobnostní prostor, podmíněná pravděpodobnost, nezávislost. Náhodné veličiny: borelovské funkce, definice náhodné veličiny, distribuční funkce, diskrétní a absolutně spojitá rozdělení pravděpodobností, pravděpodobnostní funkce a hustota, příklady spojitých a diskrétních náhodných veličin, rozdělení transformovaných náhodných veličin. Náhodné vektory: sdružená rodělení náhodných veličin, nezávislost, příklady mnohorozměrných rozdělení (n-rozměrné normální a multinomické rozdělení), rozdělení součtu a podílu, rozdělení odvozená od normálního, marginální rozdělení. Charakteristiky: střední hodnota, rozptyl, kovariance, momenty a jejich vlastnosti; varianční a korelační matice; charakteristická funkce náhodné veličiny a náhodného vektoru. Limitní věty: Borelova a Cantelliho věta, Čebyševova nerovnost, zákony velkých čísel, centrální limitní věta.
- Literatura
- Ash, R.B. and Doléans-Dade C.A. Probability and measure theory. Academic Press. San Diego.2000
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Karr, A.F. Probability. Springer. 1992
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Výukové metody
- Přednáška: teoretická výuka kombinovaná s praktickými příklady Cvičení: cvičení zaměřené na osvojení základních pojmů, řešení teoretických problémů, řešení jednoduchých úloh i úloh komplexního charakteru
- Metody hodnocení
- Výuka: přednáška, klasické cvičení. Aktivní práce na cvičeních. 2 písemné testy. Každý test obsahuje 4-5 příkladů a je hodnocený maximálně 20 body. K úspěšnému zvládnutí je potřeba dosáhnout alespoň polovinu bodů. Zkouška písemná i ústní. Písemná část obsahuje 4 teoretické otázky, každou za 10 bodů. Celkový výsledek zkoušky je korigován ústní částí. Závěrečné hodnocení: A: 37 - 40 bodů B: 32 - 36 bodů C: 27 - 31 bodů D: 22 - 26 bodů E: 18 - 21 bodů F: 0 - 17 bodů
- Navazující předměty
- Informace učitele
- K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie. Ukončení předmětu zápočtem je možné pouze pro studenty Matematické biologie.
- Další komentáře
- Studijní materiály
Poznámka k ukončení předmětu: Ukončení předmětu zápočtem je možné pouze pro studenty Matematické biologie.
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (podzim 2019, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2019/M3121