MB152 Diferenciální a integrální počet

Fakulta informatiky
podzim 2024
Rozsah
2/2/0. 3 kr. (plus ukončení). Ukončení: zk.
Vyučováno kontaktně
Vyučující
doc. RNDr. Michal Veselý, Ph.D. (přednášející)
Mgr. Ludmila Linhartová (cvičící)
Mgr. Ondřej Suchánek (cvičící)
Mgr. Jakub Záthurecký, Ph.D. (cvičící)
doc. Mgr. Jan Koláček, Ph.D. (pomocník)
prof. Mgr. Petr Hasil, Ph.D. (náhr. zkoušející)
Mgr. Jiřina Šišoláková, Ph.D. (náhr. zkoušející)
Garance
doc. RNDr. Michal Veselý, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 24. 9. až Út 17. 12. Út 16:00–17:50 D3
  • Rozvrh seminárních/paralelních skupin:
MB152/01: Čt 26. 9. až Čt 19. 12. Čt 10:00–11:50 A320, L. Linhartová
MB152/02: Čt 26. 9. až Čt 19. 12. Čt 12:00–13:50 A320, L. Linhartová
MB152/03: Čt 26. 9. až Čt 19. 12. Čt 14:00–15:50 A320, L. Linhartová
MB152/04: St 25. 9. až St 18. 12. St 14:00–15:50 B204, O. Suchánek
MB152/05: St 25. 9. až St 18. 12. St 16:00–17:50 B204, O. Suchánek
MB152/06: St 25. 9. až St 18. 12. St 18:00–19:50 B204, O. Suchánek
MB152/07: St 25. 9. až St 18. 12. St 12:00–13:50 B204, J. Záthurecký
Předpoklady
!NOW( MB142 Aplikovaná matematická analýza )
Středoškolská matematika. Poznamenejme, že MB142 je odlehčená varianta předmětu MB152.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 36 mateřských oborů, zobrazit
Cíle předmětu
Jedná se o základní kurz matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu a teorií nekonečných řad. Studenti se budou orientovat v základních teoretických a praktických metodách a budou schopni aplikovat tyto metody na konkrétní úlohy.
Výstupy z učení
Studenti budou po absolvování předmětu schopni:
pracovat prakticky i teoreticky s derivací a integrálem (neurčitým i určitým);
analyzovat chování funkcí jedné reálné proměnné;
rozumět teorii a použití nekonečných číselných a mocninných řad;
rozumět vybraným aplikacím infinitezimálního počtu;
aplikovat metody diferenciálního a integrálního počtu na konkrétní úlohy.
Osnova
  • Spojité funkce a limity
  • Derivace a její aplikace
  • Přehled základních funkcí
  • Primitivní funkce (neurčitý integrál)
  • Riemannův integrál a jeho aplikace (včetně úvodu do základních diferenciálních rovnic)
  • Úvod do diferenciálního (a integrálního) počtu funkcí více proměnných
  • Nekonečné řady
Literatura
    doporučená literatura
  • RILEY, K.F., M.P. HOBSON a S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004, 1232 s. ISBN 0 521 89067 5. info
    neurčeno
  • Matematická analýza pro fyziky. Edited by Pavel Čihák. Vyd. 1. Praha: Matfyzpress, 2001, v, 320 s. ISBN 80-85863-65-0. info
  • DOŠLÁ, Zuzana a Vítězslav NOVÁK. Nekonečné řady. Vyd. 1. Brno: Masarykova univerzita, 1998, 113 s. ISBN 8021019492. info
Výukové metody
Výuka je vedena formou klasických dvouhodinových přednášek a standardních cvičení
Metody hodnocení
Dvouhodinová přednáška a dvouhodinové cvičení. Studenti, kteří během celého semestru (tj. ze cvičení) nezískají alespoň 8 bodů (z 24), budou hodnoceni známkou X a k závěrečné zkoušce již nejdou. Závěrečná písemná zkouška je na max. 45 bodů. Pro úspěšné ukončení předmětu (hodnocení minimálně E) je zapotřebí získat alespoň 20 bodů.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2020, podzim 2021, podzim 2022, podzim 2023.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/fi/podzim2024/MB152