PřF:M1101 Matematická analýza I - Informace o předmětu
M1101 Matematická analýza I
Přírodovědecká fakultapodzim 2008
- Rozsah
- 4/2/0. 6 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. RNDr. Bedřich Půža, CSc. (přednášející)
doc. RNDr. Ladislav Adamec, CSc. (cvičící)
Mgr. Filip Münz, PhD. (cvičící)
Mgr. Ing. Eva Pekárková, Ph.D. (cvičící)
doc. RNDr. Michal Veselý, Ph.D. (cvičící)
doc. Mgr. Petr Zemánek, Ph.D. (cvičící) - Garance
- doc. RNDr. Bedřich Půža, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 8:00–9:50 U-aula, Pá 8:00–9:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M1101/02: Po 12:00–13:50 M5,01013, L. Adamec
M1101/03: St 8:00–9:50 M4,01024, E. Pekárková
M1101/04: Čt 13:00–14:50 M4,01024, P. Zemánek - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika - ekonomie (program PřF, B-AM)
- Matematika (program PřF, B-MA)
- Cíle předmětu
- Jedná se o vstupní kurs matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu funkcí jedné proměnné. Výklad je koncipován tak, aby se srovnaly nestejné vstupní znalosti, se kterými přicházejí studenti ze středních škol.
- Osnova
- Úvod: Reálná čísla a jejich základní vlastnosti, obecné vlastnosti reálných funkcí, elementární funkce. Funkce a posloupnosti: Posloupnosti reálných čísel, limita a spojitost funkcí, vlastnosti spojitých funkcí. Derivace funkce: základní pravidla, vlastnosti derivace, geometrický význam derivace, Taylorův vzorec, vyšetřování průběhu funkcí, křivky v rovině. Neurčitý integrál: primitivní funkce a její vlastnosti, základní integrační metody, speciální integrační postupy (integrály s goniometrickými, iracionálními a dalšími typy elementárních funkcí). Riemannův integrál a jeho vlastnosti: konstrukce Riemannova integrálu a jeho výpočet (Newton-Leibnizova formule), aplikace integrálu (plocha rovinných obrazců, délka křivky, objem a povrch pláště rotačního tělesa).
- Literatura
- NOVÁK, Vítězslav. Diferenciální počet v R. Brno: Masarykova univerzita Brno, 1997, 250 s. ISBN 80-210-1561-6. info
- NOVÁK, Vítězslav. Integrální počet funkcí jedné proměnné. Vyd. 1. Brno: Rektorát UJEP, 1980, 89 s. info
- Diferenciální počet. Edited by Vojtěch Jarník. Vyd. 6. nezměn. Praha: Academia, 1974, 391 s. URL info
- Integrální počet. Edited by Vojtěch Jarník. Vyd. 5. nezměn. Praha: Academia, 1974, 243 s. URL info
- Metody hodnocení
- Přednáška 4 + cvičení 2 hod. týdně, 2 kontrolní písemky (30% min. 10%) ve cvičeních, písemná (40% min. 10%)a ústní část (30% min. 10%) zkoušky s celkovým hodnocením daným dílčích výsledků (min. 30%)
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- M2100 Matematická analýza II
M1100 || M1101 || M1100F - M2100F Matematická analýza II
M1100 || M1101 || M1100F - M2120 Finanční matematika I
M1100 || M2510 || MUC12 || M1101 || M1100F || NOW(MIN201) || MIN201 - M5123 Finanční matematika II
M1100 || M2510 || M1101 || M1100F - M5858 Spojité deterministické modely I
(M1110||M1111) && (M1100||M1101||FI:MB000||M1100F)||FI:MB103||FI:MB203||MB103v||FI:MB102||M2B02
- M2100 Matematická analýza II
- Statistika zápisu (podzim 2008, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2008/M1101