M1101 Matematická analýza I

Přírodovědecká fakulta
podzim 2008
Rozsah
4/2/0. 6 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Bedřich Půža, CSc. (přednášející)
doc. RNDr. Ladislav Adamec, CSc. (cvičící)
Mgr. Filip Münz, PhD. (cvičící)
Mgr. Ing. Eva Pekárková, Ph.D. (cvičící)
doc. RNDr. Michal Veselý, Ph.D. (cvičící)
doc. Mgr. Petr Zemánek, Ph.D. (cvičící)
Garance
doc. RNDr. Bedřich Půža, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 8:00–9:50 U-aula, Pá 8:00–9:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M1101/01: St 10:00–11:50 G2,02003, B. Půža
M1101/02: Po 12:00–13:50 M5,01013, L. Adamec
M1101/03: St 8:00–9:50 M4,01024, E. Pekárková
M1101/04: Čt 13:00–14:50 M4,01024, P. Zemánek
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Jedná se o vstupní kurs matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu funkcí jedné proměnné. Výklad je koncipován tak, aby se srovnaly nestejné vstupní znalosti, se kterými přicházejí studenti ze středních škol.
Osnova
  • Úvod: Reálná čísla a jejich základní vlastnosti, obecné vlastnosti reálných funkcí, elementární funkce. Funkce a posloupnosti: Posloupnosti reálných čísel, limita a spojitost funkcí, vlastnosti spojitých funkcí. Derivace funkce: základní pravidla, vlastnosti derivace, geometrický význam derivace, Taylorův vzorec, vyšetřování průběhu funkcí, křivky v rovině. Neurčitý integrál: primitivní funkce a její vlastnosti, základní integrační metody, speciální integrační postupy (integrály s goniometrickými, iracionálními a dalšími typy elementárních funkcí). Riemannův integrál a jeho vlastnosti: konstrukce Riemannova integrálu a jeho výpočet (Newton-Leibnizova formule), aplikace integrálu (plocha rovinných obrazců, délka křivky, objem a povrch pláště rotačního tělesa).
Literatura
  • NOVÁK, Vítězslav. Diferenciální počet v R. Brno: Masarykova univerzita Brno, 1997, 250 s. ISBN 80-210-1561-6. info
  • NOVÁK, Vítězslav. Integrální počet funkcí jedné proměnné. Vyd. 1. Brno: Rektorát UJEP, 1980, 89 s. info
  • Diferenciální počet. Edited by Vojtěch Jarník. Vyd. 6. nezměn. Praha: Academia, 1974, 391 s. URL info
  • Integrální počet. Edited by Vojtěch Jarník. Vyd. 5. nezměn. Praha: Academia, 1974, 243 s. URL info
Metody hodnocení
Přednáška 4 + cvičení 2 hod. týdně, 2 kontrolní písemky (30% min. 10%) ve cvičeních, písemná (40% min. 10%)a ústní část (30% min. 10%) zkoušky s celkovým hodnocením daným dílčích výsledků (min. 30%)
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2010 - akreditace, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018.