Bi9260 Cellular and molecular neurobiology

Faculty of Science
Autumn 2016
Extent and Intensity
2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Petr Beneš, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Jan Šmarda, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: doc. Mgr. Petr Beneš, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science
Timetable
Mon 19. 9. to Sun 18. 12. Fri 10:00–11:50 B11/333
Prerequisites
Bi4020 Molecular biology && Bi7090 Eukaryotic cells
Principal knowledge of physiology, cell and molecular biology with focus on eukaryotic organisms.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of this course students will understand essential principles of nervous system organisation, development and function. Students will be able to define key molecular mechanisms important for nervous system function.
Syllabus
  • Use of model organisms for functional and developmental studies of nervous system (Drosophila, Xenopus, Aplysia, C. elegans, Mus musculus, tissue culture). Neurons and neuroglial cells - morphology, function, mutual interaction. Neuron signals - electrical activity, excitability, ion channels, synapses, neurotransmitters, neuromodulators, neuropeptides. Cell signaling in nervous system - G-protein coupled receptors, cAMP, calcium signaling, protein phosphorylation and dephosphorylation. Nervous system development, neural stem cells, differentiation of neurons and glia, specific regulation of gene expression. Brain development - homeotic genes, axon growth, axon pathfinding, synapsis formation, neuronal motility. Neuronal plasticity, synaptic plasticity, neuronal adaptation. Biological basis of behaviour, biological clocks, emotion, pain, stress. Sensory system, learning, memory. Aging and death of neurons, neuronal regeneration, neuronal diseases, neuropharmacology.
Literature
  • Genetic dissection of neural circuits and behavior. Edited by S. F. Goodwin. Elsevier Inc., 2009, 199 p, ISBN 978-0-12-374836-2
  • The neurobiology of learning and memory. Edited by J. W. Rudy. Sinauer Associates, 2008, 380 p. ISBN 978-0-87893-669-4
  • SANES, Dan Harvey, Thomas A. REH and William H. HARRIS. Development of the nervous system. 3rd ed. Amsterdam: Elsevier, 2012, xvi, 341. ISBN 9780123745392. info
  • Molecular biology of the neuron. Edited by R. Wayne Davies - B. J. Morris. 2nd ed. Oxford: Oxford University Press, 2006, xvii, 480. ISBN 0198509979. info
  • SMITH, C. U. M. Elements of molecular neurobiology. 3rd ed. Chichester: John Wiley & Sons, 2002, xvi, 613. ISBN 0471560383. info
Teaching methods
lectures, class discussion, student presentation
Assessment methods
Type of examination: written test which consists of 30 questions, 50% of correct answers is needed to pass.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2011 - only for the accreditation, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2016, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2016/Bi9260