M4180 Numerické metody I

Přírodovědecká fakulta
jaro 2022
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
Mgr. Jiří Zelinka, Dr. (přednášející)
RNDr. Bc. Iveta Selingerová, Ph.D. (cvičící)
Mgr. Jakub Záthurecký, Ph.D. (cvičící)
doc. Mgr. Jan Koláček, Ph.D. (pomocník)
Garance
doc. Mgr. Jan Koláček, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 14:00–15:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M4180/01: Po 8:00–8:50 M6,01011, Po 9:00–9:50 MP1,01014, I. Selingerová
M4180/02: St 18:00–18:50 M6,01011, St 19:00–19:50 MP1,01014, J. Záthurecký
M4180/03: Čt 18:00–18:50 M6,01011, Čt 19:00–19:50 MP1,01014, J. Záthurecký
Předpoklady
!( ROCNIK(1) && PROGRAM(B-MA))
Diferenciální počet funkce jedné a více proměnných. Základní znalosti lineární algebry -teorie matic a řešení soustav lineárních rovnic. Základy programování.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Tento předmět společně s předmětem Numerické metody II poskytuje ucelený výklad numerické matematiky jako samostatné vědní disciplíny. Důraz je kladen na algoritmizaci a počítačovou implementaci. Výklad je vhodně doplněn příklady s grafickými výstupy, pomocí nichž lze vysvětlit i některé velmi obtížné partie. Po absolvování kurzu bude student schopen aplikovat numerické metody při řešení praktických úloh a použít tyto metody i v jiných předmětech např. ve statistických metodách.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- numericky řešit nelineární rovnice a přitom se rozhodnout, která metoda bude v pro daný problém nejvhodnější,
- separovat reálné kořeny polynomů a určit je pomocí vhodné numerické metody,
- použít iterační metody pro hledání řešení systémů lineárních i nelineárních orvnic.
Osnova
  • Analýza chyb
  • Řešení nelineárních rovnic - princip iteračních metod, jejich řád a konvergence, Newtonova metoda, metoda sečen, regula falsi, Steffensenova metoda, Müllerova metoda
  • Kořeny polynomů - Sturmova věta, aplikace Newtonovy metody, výpočet všech kořenů polynomu, Bairstowova metoda
  • Přímé metody řešení systému lineárních rovnic - Gaussova eliminační metoda, LU rozklad, Choleského metoda, Croutova metoda, zpětná analýza chyb, stabilita algoritmů a podmíněnost úloh
  • Iterační metody řešení systému lineárních rovnic - princip konstrukce iteračních metod, věty o konvergenci, Jacobiova iterační metoda, Gaussova -Seidelova metoda, relaxační metody.
  • Řešení systémů nelineárních rovnic-Newtonova metoda, Seidelova metoda
Literatura
    doporučená literatura
  • HOROVA, Ivana a Jiří ZELINKA. Numerické metody. 2. vyd. Brno: Masarykova univerzita v Brně, 2004, 294 s. 3871/Př-2/04-17/31. ISBN 80-210-3317-7. info
  • MATHEWS, John H. a Kurtis D. FINK. Numerical methods using MATLAB. 4th ed. Upper Saddle River, N.J.: Pearson, 2004, ix, 680. ISBN 0130652482. info
    neurčeno
  • DATTA, Biswa Nath. Numerical linear algebra and applications. Pacific Grove: Brooks/Cole publishing company, 1994, xxii, 680. ISBN 0-534-17466-3. info
  • STOER, J. a R. BULIRSCH. Introduction to numerical analysis. 1. vyd. New York - Heidelberg - Berlin: Springer-Verlag, 1980, 609 s. IX. ISBN 0-387-90420-4. info
  • RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
Výukové metody
Přednáška: 2 hod. týdně, teoretická výuka Cvičení: 2 hod. týdně.Teoretické cvičení (1 hod.) je zaměřeno na řešení úloh metodami uvedenými na přednášce, praktické cvičení v počítačové učebně orientované na algoritmizaci a programování probraných numerických metod.
Metody hodnocení
Účast na cvičení je povinná, k získání zápočtu je třeba úspěšně absolvovat písemné testy nebo vypracovat zadané úkoly.
Zkouška je písemná.
Známkování podle dosažených výsledků:
A: 20-22 bodů
B: 18-19 bodů
C: 16-17 bodů
D: 14-15 bodů
E: 12-13 bodů
F: méně než 12 bodů
Navazující předměty
Další komentáře
Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2023, jaro 2024, jaro 2025.