M7222 Zobecněné lineární modely

Přírodovědecká fakulta
podzim 2012
Rozsah
2/1. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
RNDr. Marie Forbelská, Ph.D. (přednášející)
Garance
prof. RNDr. Ivanka Horová, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 M3,01023
  • Rozvrh seminárních/paralelních skupin:
M7222/01: Čt 10:00–10:50 M3,01023
Předpoklady
M6120 Lineární statistické modely II
Znalost základů teorie odhadu a linearních statistických modelů plné hodnosti (regresní analýzy) i neúplné hodnosti (modelù analýzy rozptylu).
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Kurz je zaměřen na širokou třídu modelů nazývaných zobecněné lineární modely (GLM modely), které jsou rozšířením klasických regresních modelů a umožňují modelovat data s normálním, Poissonovým, binomickým i gamma rozdělením, stejně jako mnohorozměrné kontingenční tabulky.
Cvičení na počítači je prováděno pomocí programovacího systému R a je věnováno aplikacím z různých oblastí přírodních i společenských věd.
Na konci tohoto kurzu bude student schopen pochopit principy teorie odhadování parametrů a testování hypotéz v zobecněném lineárním modelu; naučit se tyto výsledky využívat pro konkrétní modely; pochopit vztahy mezi jednotlivými druhy těchto modelů; interpretovat jejich výsledky.
Osnova
  • Vybrané partie z teorie odhadu: regulární systémy hustot a jejich vlastnosti, rozdělení exponenciálního typu, vlastnosti maximálně věrohodných odhadů výběrů z rozdělení s regulární hustotou. Zobecněné lineární modely: popis komponent modelu (linkovací funkce, lineární prediktor, rozdělení exponenciálního typu pro závisle proměnnou veličinu), odhady neznámých parametrů metodou maximální věrohodnosti, Newton-Raphsonova metoda a metoda skórování, inference v zobecněných lineárních modelech, deviance, strategie budování modelu, minimální, maximální modely a submodely, ověřování předpokladů a regresní diagnostika pro zobecněný lineární model. Gamma regrese, regresní modely pro alternativní (binární) a binomická data, modely dávka odpověď, modely pro nominální a ordinální data, poissonovská regrese, log-lineární modely a kontingenční tabulky.
Literatura
  • An introduction to generalized linear models. Edited by Annette J. Dobson. 2nd ed. Boca Raton: CRC Press, 2002, vii, 225 s. ISBN 1-58488-165-8. info
  • FAHRMEIR, Ludwig a Gerhard TUTZ. Multivariate statistical modelling based on generalized linear models. New York: Springer-Verlag, 1994, 425 s. ISBN 0387942335. info
Výukové metody
Přednáška: teoretická výuka kombinovaná s praktickými příklady ;
Cvičení: praktická cvičení zaměřené na procvičení základních pojmů a tvrzení, samostatné řešení úloh.
Metody hodnocení
Přednáška se cvičením v počítašové učebně. Zkouška je ústní. Je nutná aktivní účast na cvičeních.
Informace učitele
K úspěšnému ukončení předmětu je potřeba porozumět základním pojmům vyložené teorie, znalost definic, vět a základních důkazů, umět řešit typické úlohy vyložené teorie.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 2010 - akreditace, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2023, podzim 2024.