PřF:M5858 Spojité determin. modely I - Informace o předmětu
M5858 Spojité deterministické modely I
Přírodovědecká fakultapodzim 2024
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučováno kontaktně - Vyučující
- prof. RNDr. Zdeněk Pospíšil, Dr. (přednášející)
Mgr. Pavel Morcinek (cvičící) - Garance
- prof. RNDr. Zdeněk Pospíšil, Dr.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- ( M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ) && ( M1100 Matematická analýza I || M1101 Matematická analýza I || FI:MB000 Matematická analýza I || M1100F Matematická analýza I )|| FI:MB103 Spojité modely a statistika || FI:MB203 Spoj. modely a stat. B || MB103v Matematika III || FI:MB102 Dif. a integrální počet || M2B02 Difer. a integr. počet II
Libovolný kurs matematické analýzy a lineární algebry - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-EXB)
- Cíle předmětu
- Předmět má poskytnout základní přehled o teorii obyčejných diferenciálních rovnic. Student bude schopen použít elementární metody jejich řešení a rozumět jednoduchým spojitým deterministickým modelům v biologii a ekonomii.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- vyjádřit reálný proces probíhající ve spojitém čase pomocí diferenciální rovnice nebo systému diferenciálních rovnic;
- tento model analyzovat, zejména z hlediska dlouhodobého vývoje;
- získané výsledky interpretovat. - Osnova
- 1. Základní pojmy - rovnice, počáteční problém, obecné a partikulární řešení. 2. Elementární metody řešení - lineární rovnice, rovnice se separovanými proměnnými, exaktní rovnice, rovnice homogenní, Bernoulliova, lineární rovnice vyššího řádu s konstantními koeficienty, systémy rovnic s konstantními koeficienty. 3. Existence a jednoznačnost řešení, závislost řešení na počátečních podmínkách a parametrech. 4. Diferenciální nerovnosti, odhad řešení. 5. Struktura řešení lineárního systému. 6. Autonomní systémy, trajektorie, stacionární řešení, stabilita. 7. Modely dynamiky populací. 8. Epidemiologické modely. 9. Modely v ekonomii.
- Literatura
- KALAS, Josef a Miloš RÁB. Obyčejné diferenciální rovnice. 1. vyd. Brno: Masarykova univerzita, 1995, 207 s. ISBN 8021011300. info
- KALAS, Josef a Zdeněk POSPÍŠIL. Spojité modely v biologii. 1. vyd. Brno: Masarykova univerzita v Brně, 2001, 256 s. ISBN 80-210-2626-X. info
- DIBLÍK, Josef a RǓŽIČKOVÁ, Miroslava. Obyčajné diferenciálne rovnice, EDIS 2008
- RÁB, Miloš. Metody řešení obyčejných diferenciálních rovnic. 2. přeprac. vyd. Brno: Masarykova univerzita, 1998, 96 s. ISBN 8021018186. info
- PLCH, Roman. Příklady z matematické analýzy, Diferenciální rovnice. 1. vydání. Brno: Masarykova univerzita, 2002, 31 s. ISBN 80-210-2806-8. info
- Výukové metody
- Dvouhodinová teoretická přednáška a dvouhodinové cvičení jednou týdně. V poslední třetině semestru přednáška obsahuje demonstraci řešení vybraných aplikačních úloh, ve cvičení se předpokládá aktivní účast studentů.
- Metody hodnocení
- V průběhu semestru písemka z elementárních metod řešení; zkouška má část písemnou a ústní. Typické písemky včetně hodnocení jsou zveřejněny ve studijních materiálech předmětu.
- Navazující předměty
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
Výuka probíhá každý týden.
- Statistika zápisu (nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2024/M5858