FI:MB101 Foundations of mathematics I - Course Information
MB101 Mathematics I
Faculty of InformaticsAutumn 2002
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Jiří Kaďourek, CSc. (lecturer)
Mgr. David Holec, Ph.D. (seminar tutor)
Mgr. Daniel Marek, Ph.D. (seminar tutor)
Mgr. Andrea Pavliňáková (seminar tutor)
Mgr. Šárka Pechancová, Ph.D. (seminar tutor)
RNDr. Lenka Viskotová, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Faculty of Informatics
Contact Person: doc. RNDr. Jiří Kaďourek, CSc. - Timetable
- Mon 11:00–12:50 D2, Thu 8:00–9:50 D1
- Timetable of Seminar Groups:
MB101/02: Mon 18:00–19:50 B003, Š. Pechancová
MB101/03: Mon 14:00–15:50 B003, D. Marek
MB101/04: Tue 8:00–9:50 B003, L. Viskotová
MB101/05: Tue 10:00–11:50 B003, A. Pavliňáková
MB101/06: Tue 12:00–13:50 B003, D. Holec
MB101/07: Tue 14:00–15:50 B003, D. Holec
MB101/08: Mon 11:00–12:50 B007, A. Pavliňáková
MB101/09: Mon 18:00–19:50 B007, D. Marek
MB101/10: Fri 10:00–11:50 B007, L. Viskotová - Prerequisites
- (! M005 Foundations of mathematics )&&(! MB005 Foundations of mathematics )&&(!NOW( MB005 Foundations of mathematics ))
High school mathematics. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Course objectives
- The course is the first part of the four semestr block, Mathematics I - IV. In the whole block the fundamentals of general algebra, linear algebra and analysis, including their application in probability, and graph theory are presented. The course Mathematics I, in particular, is concerned with the principles of set theory, combinatorics and with the basic concepts from group theory.
- Syllabus
- Sets, algebra of sets, construction of natural numbers.
- Relations between sets, composition of relations, inverse relations.
- Mappings, injective and surjective mappings, cardinality of sets, Cantor theorem
- Equivalences and partitions of sets, construction of rational numbers.
- Ordered sets, isotone mappings, Dedekind's construction of real numbers.
- Lattices and complete lattices, suprema and infima of bounded sets of real numbers.
- Basic combinatorial functions and combinatorial identities, variations and combinations.
- Inclusion-exclusion principle.
- Permutations of finite sets, parity of permutations.
- Semigroups, monoids, groups.
- Divisibility of integers, decomposition to prime numbers.
- Groups of residue classes.
- Subgroups, homomorphisms and isomorphisms of groups, Cayley theorem.
- Literature
- FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978, 175 s. info
- FUCHS, Eduard. Kombinatorika a teorie grafů. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 138 s. info
- ROSICKÝ, Jiří. Algebra. I. 1. vyd. Brno: Rektorát UJEP, 1982, 140 . info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993, 145 s. ISBN 8021008164. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB101!
- Assessment methods (in Czech)
- Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
- Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2002, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2002/MB101