FI:MB101 Mathematics I - Course Information
MB101 Mathematics I
Faculty of InformaticsSpring 2006
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Martin Panák, Ph.D. (lecturer)
Ing. Mgr. Dávid Dereník (seminar tutor)
RNDr. Jiří Glozar (seminar tutor)
doc. Mgr. Kamila Hasilová, Ph.D. (seminar tutor)
Mgr. et Mgr. Lukáš Maňásek (seminar tutor)
RNDr. Karel Šrot, Ph.D. (seminar tutor)
Mgr. Jiří Vítovec, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics - Timetable
- Mon 12:00–13:50 D1, Tue 12:00–13:50 D1
- Timetable of Seminar Groups:
MB101/01: Thu 12:00–13:50 B011, K. Hasilová
MB101/02: Thu 14:00–15:50 B011, K. Hasilová
MB101/03: Fri 12:00–13:50 B003, J. Glozar
MB101/04: Wed 18:00–19:50 B204, J. Vítovec - Prerequisites
- (! M005 Foundations of mathematics )&&(! MB005 Foundations of mathematics )&&(!NOW( MB005 Foundations of mathematics ))
High school mathematics. - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 10 fields of study the course is directly associated with, display
- Course objectives
- The course is the first part of the four semestr block, Mathematics I - IV. In the entire block, the fundamentals of general algebra, linear algebra and analysis, numerical methods, combinatorics and graph theory, including some applications in probability theory and statistics are presented. The course Mathematics I, in particular, is concerned with the principles of mathematics, linear algebra and elementary geometry.
- Syllabus
- Scalars, scalar functions, combinatorial examples and identities, finite probability, geometric probability, difference equations.
- Motivation geometric problems in space and plane, systems of linear equations, elimination of variables.
- Relations and mappings, injectiv and surjectiv mappings, set cardinality, equivalences and decompositions.
- Vector, vector space, linear independence, basis, linear mappings, matrices, matrix calculus and determinants.
- Algebraical applications: systems of linear equations, linear difference equations, Markov chains
- Geometrical applications: line, plane, parametric versus non-paramteric descriptions, positioning of planes and lines, projective space extension, angle, lenght, volume.
- Literature
- FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978, 175 s. info
- FUCHS, Eduard. Kombinatorika a teorie grafů. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 138 s. info
- ROSICKÝ, Jiří. Algebra. I. 1. vyd. Brno: Rektorát UJEP, 1982, 140 . info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993, 145 s. ISBN 8021008164. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB101!
- Assessment methods (in Czech)
- Dvouhodinová přednáška a dvouhodinové přednášená ukázková řešení úloh, spolu s povinnostmi samostatného řešení a odevzdávání úloh se zázemím cvičení. Zakončení písemnou zkouškou na konci semestru, s jednou další v semestru.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Spring 2006, recent)
- Permalink: https://is.muni.cz/course/fi/spring2006/MB101