MB101 Linear models

Faculty of Informatics
Autumn 2012
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Martin Panák, Ph.D. (lecturer)
prof. RNDr. Jan Slovák, DrSc. (lecturer)
Natalia Bezvitnaya, Ph.D. (seminar tutor)
Mgr. Zdeňka Geršlová (seminar tutor)
Mgr. Jitka Hořanská (seminar tutor)
Mgr. Bc. Tomáš Janík (seminar tutor)
doc. Mgr. Ondřej Klíma, Ph.D. (seminar tutor)
RNDr. Mgr. Miroslav Korbelář, Ph.D. (seminar tutor)
Mgr. Jan Meitner (seminar tutor)
doc. Mgr. Aleš Návrat, Dr. rer. nat. (seminar tutor)
Dr. Alexandru Emil Stanculescu, Ph.D. (seminar tutor)
Mgr. Jaroslav Šeděnka, Ph.D. (seminar tutor)
doc. Mgr. Josef Šilhan, Ph.D. (seminar tutor)
Mgr. Kateřina Štekovičová (seminar tutor)
Mgr. Iva Veselá, Ph.D. (seminar tutor)
doc. Lukáš Vokřínek, PhD. (seminar tutor)
RNDr. Jan Vondra, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Contact Person: prof. RNDr. Jan Slovák, DrSc.
Supplier department: Faculty of Science
Timetable
Mon 16:00–17:50 D1, Mon 16:00–17:50 D3, Mon 16:00–17:50 D2
  • Timetable of Seminar Groups:
MB101/T01A: Tue 18. 9. to Fri 21. 12. Tue 8:00–9:55 Učebna S4 (35a), J. Hořanská
MB101/T01AA: Thu 20. 9. to Fri 21. 12. Thu 8:00–9:55 Učebna S4 (35a), J. Hořanská
MB101/T01AAA: Fri 21. 9. to Fri 21. 12. Fri 8:00–9:55 Učebna S4 (35a), J. Hořanská
MB101/T02: Tue 18. 9. to Fri 21. 12. Tue 9:00–10:55 Učebna S11 (58), I. Veselá
MB101/01: Tue 16:00–17:50 G123, Z. Geršlová
MB101/02: Tue 18:00–19:50 G123, Z. Geršlová
MB101/03: Thu 12:00–13:50 G125, J. Šilhan
MB101/04: Thu 14:00–15:50 G125, J. Šilhan
MB101/05: Tue 10:00–11:50 G125, O. Klíma
MB101/06: Tue 14:00–15:50 G124, A. Stanculescu
MB101/07: Tue 14:00–15:50 C511, N. Bezvitnaya
MB101/08: Fri 12:00–13:50 G124, J. Meitner
MB101/09: Wed 8:00–9:50 G124, J. Šeděnka
MB101/10: Wed 10:00–11:50 G124, J. Šeděnka
MB101/11: Fri 8:00–9:50 G124, T. Janík
MB101/12: Fri 10:00–11:50 G124, T. Janík
MB101/13: Wed 18:00–19:50 G123, K. Štekovičová
MB101/14: Wed 16:00–17:50 G123, K. Štekovičová
MB101/15: Tue 9:00–10:50 G124, A. Návrat
MB101/16: Fri 14:00–15:50 G124, J. Meitner
MB101/17: Fri 16:00–17:50 G124, M. Korbelář
MB101/18: Fri 18:00–19:50 G124, L. Vokřínek
Prerequisites
! MB005 Foundations of mathematics && !NOW( MB201 Linear models B ) && ! MB201 Linear models B
High school mathematics.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
The course is the first part of the four semester block of Mathematics. In the entire course, the fundamentals of general algebra and number theory, linear algebra, mathematical analysis, numerical methods, combinatorics, as well as probability and statistics are presented. Passing this four semester course will allow the student to deal with basic mathematical concepts and problems and he/she will master the discrete and continuous intuition necessary for the mathematical formulation of real problems. The first part of the course, in particular, aims at the principles of mathematics, linear algebra, elementary geometry and some explicit applications.
Syllabus
  • 1. Warm up (4 weeks) -- scalars, scalar functions, combinatorial examples and identities, finite probability, geometric probability, geometry of the plane, relations and mappings, eqivalences nad orderings.
  • 2. Vectors and matrices (3 weeks) -- vectors, vector space, linear independence, basis, linear mappings, matrices, matrix calculus and determinants, orthogonality, eigenvalues and eigenvectors.
  • 3. Linear models (3 weeks) -- systems of linear (in)equalities, linear programming problem, linear difference equations, iterated processes (population models) and Markov chains.
  • $. Analytical geometry (2 weeks) -- geometrical applications: line, plane, parametric versus non-paramteric descriptions, positioning of planes and lines, projective space extension, angle, length, volume, elementary classification of quadrics.
Literature
  • MOTL, Luboš and Miloš ZAHRADNÍK. Pěstujeme lineární algebru. 3. vyd. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2002, 348 s. ISBN 8024604213. info
  • FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978, 175 s. info
  • RILEY, K.F., M.P. HOBSON and S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004, 1232 pp. ISBN 0 521 89067 5. info
  • HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993, 145 s. ISBN 8021008164. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB101!
Teaching methods
Lecture covering the theory with illustrative solved problems. Seminar groups devoted to solving numerical problems.
Assessment methods
Two hours of lectures, two hours of tutorial. Final written test as examination. Results of tutorials/homeworks are partially reflected in the assessment.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught each semester.
Information on the extent and intensity of the course: 2.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Spring 2006, Autumn 2006, Spring 2007, Autumn 2007, Spring 2008, Autumn 2008, Spring 2009, Autumn 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Spring 2012, Spring 2013, Autumn 2013, Spring 2014, Autumn 2014, Spring 2015, Autumn 2015, Spring 2016, Autumn 2016, Spring 2017, Autumn 2017, Spring 2018, Autumn 2018, Spring 2019.
  • Enrolment Statistics (Autumn 2012, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2012/MB101