FI:MB101 Mathematics I - Course Information
MB101 Mathematics I
Faculty of InformaticsAutumn 2004
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Jan Paseka, CSc. (lecturer)
Mgr. David Kruml, Ph.D. (seminar tutor)
Mgr. Tomáš Lipenský (seminar tutor)
Mgr. Andrea Pavliňáková (seminar tutor)
RNDr. Veronika Svobodová, Ph.D. (seminar tutor)
RNDr. Pavla Zagorová (seminar tutor) - Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Faculty of Informatics
Contact Person: prof. RNDr. Jan Paseka, CSc. - Timetable
- Fri 10:00–11:50 D1, Fri 10:00–11:50 D3
- Timetable of Seminar Groups:
MB101/02: Mon 18:00–19:50 B007, V. Svobodová
MB101/03: Fri 8:00–9:50 B003, P. Zagorová
MB101/04: Thu 14:00–15:50 C511, P. Zagorová
MB101/05: Tue 12:00–13:50 B007, A. Pavliňáková
MB101/06: Tue 14:00–15:50 B007, A. Pavliňáková
MB101/07: Tue 18:00–19:50 B204, V. Svobodová
MB101/08: Mon 14:00–15:50 B007, D. Kruml
MB101/09: Tue 18:00–19:50 B007, A. Pavliňáková
MB101/10: Thu 8:00–9:50 B007, T. Lipenský
MB101/11: Thu 10:00–11:50 B007, T. Lipenský
MB101/12: Fri 12:00–13:50 B003, J. Paseka - Prerequisites
- (! M005 Foundations of mathematics )&&(! MB005 Foundations of mathematics )&&(!NOW( MB005 Foundations of mathematics ))
High school mathematics. - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 10 fields of study the course is directly associated with, display
- Course objectives
- The course is the first part of the four semestr block, Mathematics I - IV. In the whole block the fundamentals of general algebra, linear algebra and analysis, including their application in probability, and graph theory are presented. The course Mathematics I, in particular, is concerned with the principles of set theory, combinatorics and with the basic concepts from group theory.
- Syllabus
- Sets, algebra of sets, construction of natural numbers.
- Relations between sets, composition of relations, inverse relations.
- Mappings, injective and surjective mappings, cardinality of sets, Cantor theorem
- Equivalences and partitions of sets, construction of rational numbers.
- Ordered sets, isotone mappings, Dedekind's construction of real numbers.
- Lattices and complete lattices, suprema and infima of bounded sets of real numbers.
- Basic combinatorial functions and combinatorial identities, variations and combinations.
- Inclusion-exclusion principle.
- Permutations of finite sets, parity of permutations.
- Semigroups, monoids, groups.
- Divisibility of integers, decomposition to prime numbers.
- Groups of residue classes.
- Subgroups, homomorphisms and isomorphisms of groups, Cayley theorem.
- Literature
- FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978, 175 s. info
- FUCHS, Eduard. Kombinatorika a teorie grafů. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 138 s. info
- ROSICKÝ, Jiří. Algebra. I. 1. vyd. Brno: Rektorát UJEP, 1982, 140 . info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993, 145 s. ISBN 8021008164. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB101!
- Assessment methods (in Czech)
- Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2004, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2004/MB101