FI:MB101 Mathematics I - Course Information
MB101 Mathematics I
Faculty of InformaticsSpring 2008
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Martin Panák, Ph.D. (lecturer)
prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
prof. Mgr. Petr Hasil, Ph.D. (seminar tutor)
RNDr. Gabriela Kraváčková (seminar tutor)
Mgr. Robert Meixner (seminar tutor)
Mgr. Oldřich Spáčil (seminar tutor) - Guaranteed by
- prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics - Timetable
- Tue 8:00–9:50 D1, Thu 8:00–9:50 D1
- Timetable of Seminar Groups:
MB101/02: Fri 10:00–11:50 B007, P. Hasil
MB101/03: Mon 8:00–9:50 B011, P. Hasil
MB101/04: Thu 16:00–17:50 C511, G. Kraváčková
MB101/05: Thu 18:00–19:50 C511, G. Kraváčková
MB101/07: Fri 12:00–13:50 B007, R. Meixner - Prerequisites
- ! MB005 Foundations of mathematics &&!NOW( MB005 Foundations of mathematics )
High school mathematics. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 320 student(s).
Current registration and enrolment status: enrolled: 0/320, only registered: 0/320, only registered with preference (fields directly associated with the programme): 0/320 - fields of study / plans the course is directly associated with
- there are 15 fields of study the course is directly associated with, display
- Course objectives
- The course is the first part of the four semestr block, Mathematics I - IV. In the entire block, the fundamentals of general algebra, linear algebra and analysis, numerical methods, combinatorics and graph theory, including some applications in probability theory and statistics are presented. The course Mathematics I, in particular, is concerned with the principles of mathematics, linear algebra and elementary geometry.
- Syllabus
- Scalars, scalar functions, combinatorial examples and identities, finite probability, geometric probability, difference equations.
- Motivation geometric problems in space and plane, systems of linear equations, elimination of variables.
- Relations and mappings, injectiv and surjectiv mappings, set cardinality, equivalences and decompositions.
- Vector, vector space, linear independence, basis, linear mappings, matrices, matrix calculus and determinants.
- Algebraical applications: systems of linear equations, linear difference equations, Markov chains
- Geometrical applications: line, plane, parametric versus non-paramteric descriptions, positioning of planes and lines, angle, lenght, volume, projective space extension.
- Literature
- FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978, 175 s. info
- FUCHS, Eduard. Kombinatorika a teorie grafů. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 138 s. info
- ROSICKÝ, Jiří. Algebra. I. 1. vyd. Brno: Rektorát UJEP, 1982, 140 . info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993, 145 s. ISBN 8021008164. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB101!
- Assessment methods (in Czech)
- Dvouhodinová přednáška a dvouhodinové přednášená ukázková řešení úloh, spolu s povinným cvičením. Výsledky ze cvičení (tři průběžné písemky) se čáslečně přenášejí do hodnocení zkoušky.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
Information on course enrolment limitations: Přednostně určen pro neúspěšné z podzimu 2006 - Listed among pre-requisites of other courses
- Enrolment Statistics (Spring 2008, recent)
- Permalink: https://is.muni.cz/course/fi/spring2008/MB101