MB101 Mathematics I

Faculty of Informatics
Spring 2012
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. Petr Pupík (seminar tutor)
Mgr. Jana Švédová (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
RNDr. Jan Vondra, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Mon 10:00–11:50 D2, Wed 18:00–19:50 D2
  • Timetable of Seminar Groups:
MB101/01: Wed 12:00–13:50 G125, L. Mžourková Macálková
MB101/02: Wed 14:00–15:50 G125, L. Mžourková Macálková
MB101/03: Tue 8:00–9:50 G125, J. Švédová
MB101/04: Tue 10:00–11:50 G125, J. Švédová
MB101/05: Mon 12:00–13:50 G125, M. Werl
MB101/06: Mon 14:00–15:50 G125, M. Werl
Prerequisites
! MB005 Foundations of mathematics &&!NOW( MB005 Foundations of mathematics )
High school mathematics.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 320 student(s).
Current registration and enrolment status: enrolled: 0/320, only registered: 0/320, only registered with preference (fields directly associated with the programme): 0/320
fields of study / plans the course is directly associated with
Course objectives
The course is the first part of the four semester block Mathematics I - IV. In the entire block, the fundamentals of general algebra, linear algebra and analysis, numerical methods, combinatorics and graph theory, including some applications in probability theory and statistics are presented. Passing Mathematics I-IV will allow the student to deal with basic mathematical concepts and problems and he/she will master the discrete and continuous intuition necessary for the mathematical formulation of real problems. The course Mathematics I, in particular, aims at the principles of mathematics, linear algebra, elementary geometry and some explicit applications.
Syllabus
  • Scalars, scalar functions, combinatorial examples and identities, finite probability, geometric probability, difference equations.
  • Motivation geometric problems in space and plane, systems of linear equations, elimination of variables.
  • Relations and mappings, injectiv and surjectiv mappings, set cardinality, equivalences and decompositions.
  • Vector, vector space, linear independence, basis, linear mappings, matrices, matrix calculus and determinants.
  • Algebraical applications: systems of linear equations, linear difference equations, Markov chains
  • Geometrical applications: line, plane, parametric versus non-paramteric descriptions, positioning of planes and lines, projective space extension, angle, length, volume.
Literature
  • MOTL, Luboš and Miloš ZAHRADNÍK. Pěstujeme lineární algebru. 3. vyd. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2002, 348 s. ISBN 8024604213. info
  • FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978, 175 s. info
  • FUCHS, Eduard. Kombinatorika a teorie grafů. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 138 s. info
  • RILEY, K.F., M.P. HOBSON and S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004, 1232 pp. ISBN 0 521 89067 5. info
  • HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993, 145 s. ISBN 8021008164. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB101!
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures, two hours of presentations of typical problem solutions and tutorial. Final written test as examination. Results of tutorials/homeworks are partially reflected in the assessment.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Information on course enrolment limitations: Přednostně určen pro neúspěšné z podzimu 2006
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Spring 2006, Autumn 2006, Spring 2007, Autumn 2007, Spring 2008, Autumn 2008, Spring 2009, Autumn 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2012, Spring 2013, Autumn 2013, Spring 2014, Autumn 2014, Spring 2015, Autumn 2015, Spring 2016, Autumn 2016, Spring 2017, Autumn 2017, Spring 2018, Autumn 2018, Spring 2019.
  • Enrolment Statistics (Spring 2012, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2012/MB101