M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2007
Rozsah
2/2/0. 4 kr. (plus 2 za zk). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
RNDr. Jan Vondra, Ph.D. (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Rozvrh
Čt 12:00–13:50 U-aula
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 15:00–16:50 UP1, J. Kaďourek
M2110/03: Čt 8:00–9:50 UP1, O. Klíma
M2110/04: St 10:00–11:50 UP1, O. Klíma
M2110/05: St 8:00–9:50 UP1, O. Klíma
Předpoklady
M1110 Lineární algebra I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.