M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2021
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Ilja Kossovskij, Ph.D. (cvičící)
Mgr. Mária Šimková (cvičící)
prof. RNDr. Jan Paseka, CSc. (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 1. 3. až Pá 14. 5. Út 12:00–13:50 online_A
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 1. 3. až Pá 14. 5. St 12:00–13:50 online_M5, M. Čadek
M2110/02: Po 1. 3. až Pá 14. 5. St 14:00–15:50 online_M1, M. Šimková
M2110/03: Po 1. 3. až Pá 14. 5. Po 14:00–15:50 online_M1, I. Kossovskij
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení (částečně) online formou.
Metody hodnocení
Během semestru dostanete 10 domácích úkolů, kde budou zastoupeny i teoretické úlohy. Za každou úlohu můžete získat maximálně 10 bodů. V polovině dubna se bude psát vnitrosemestrální písemka, rovněž za 10 bodů. Samotná zkouška ve zkouškovém období bude mít písemnou část (teoretickou za 10 bodů a početní za 12 bodů) a ústní zkoušku. Splnit požadavky ze semestru znamená získat z domácích úloh aspoň 60 bodů ze 100 možných. Za získání více bodů budete odměněni bonifikací maximálně 4 bodů. Studenti, kteří získají méně než 60, ale aspoň 30 bodů, mohou psát opravnou písemku na začátku zkouškového. Získají-li z ní aspoň polovinu bodů, postupují k písemné části zkoušky s nulovou bonifikací. K ústní zkoušce postoupí studenti, kteří získali v součtu bodů bonifikace + vnitosemestrální písemka+ početní část + teoretická část aspoň 17 bodů z maximálního počtu 4+10+12+10=36 a současně získají aspoň 5 bodů z maximálního počtu 10 z teoretické části.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Během semestru dostanete 10 domácích úkolů, kde budou zastoupeny i teoretické úlohy. Za každou úlohu můžete získat maximálně 10 bodů. V polovině dubna se bude psát vnitrosemestrální písemka, rovněž za 10 bodů. Samotná zkouška ve zkouškovém období bude mít písemnou část (teoretickou za 10 bodů a početní za 12 bodů) a ústní zkoušku. Splnit požadavky ze semestru znamená získat z domácích úloh aspoň 60 bodů ze 100 možných. Za získání více bodů budete odměněni bonifikací maximálně 4 bodů. Studenti, kteří získají méně než 60, ale aspoň 30 bodů, mohou psát opravnou písemku na začátku zkouškového. Získají-li z ní aspoň polovinu bodů, postupují k písemné části zkoušky s nulovou bonifikací. K ústní zkoušce postoupí studenti, k
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2022, jaro 2023, jaro 2024, jaro 2025.