FI:MB101 Mathematics I - Course Information
MB101 Mathematics I
Faculty of InformaticsAutumn 2008
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
Mgr. Kateřina Hanžlová (seminar tutor)
Mgr. Pavla Krajíčková, Ph.D. (seminar tutor)
Mgr. Vojtěch Kubáň, Ph.D. (seminar tutor)
Mgr. Jan Meitner (seminar tutor)
Mgr. Tomáš Motl (seminar tutor)
doc. RNDr. Petr Novotný, Ph.D. (seminar tutor)
RNDr. Mária Svoreňová, Ph.D. (seminar tutor)
doc. RNDr. Michal Veselý, Ph.D. (seminar tutor)
doc. Mgr. Petr Zemánek, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics - Timetable
- Mon 8:00–9:50 D1, Mon 8:00–9:50 D3, Wed 14:00–15:50 D1, Wed 16:00–17:50 D1
- Timetable of Seminar Groups:
MB101/02: Fri 12:00–13:50 B007, P. Krajíčková
MB101/03: Fri 14:00–15:50 B007, P. Krajíčková
MB101/04: Thu 8:00–9:50 B007, V. Kubáň
MB101/05: Thu 10:00–11:50 B007, V. Kubáň
MB101/06: Thu 16:00–17:50 B007, J. Meitner
MB101/07: Thu 18:00–19:50 B007, J. Meitner
MB101/08: Thu 16:00–17:50 B003, T. Motl
MB101/09: Thu 18:00–19:50 B003, T. Motl
MB101/10: Tue 8:00–9:50 B007, P. Novotný
MB101/11: Mon 18:00–19:50 B007, P. Novotný
MB101/12: Mon 12:00–13:50 B007, K. Hanžlová
MB101/13: Mon 14:00–15:50 B007, K. Hanžlová
MB101/14: Fri 8:00–9:50 B007, M. Svoreňová
MB101/15: Fri 10:00–11:50 B007, M. Svoreňová
MB101/16: Tue 16:00–17:50 B007, P. Zemánek
MB101/17: Tue 14:00–15:50 B007, P. Zemánek - Prerequisites
- ! MB005 Foundations of mathematics &&!NOW( MB005 Foundations of mathematics )
High school mathematics. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Bioinformatics (programme FI, B-AP)
- Informatics with another discipline (programme FI, B-BI)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-GE)
- Informatics with another discipline (programme FI, B-GK)
- Informatics with another discipline (programme FI, B-CH)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-SO)
- Informatics with another discipline (programme FI, B-TV)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Systems and Data Processing (programme FI, B-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Course objectives
- The course is the first part of the four semester block Mathematics I - IV. In the entire block, the fundamentals of general algebra, linear algebra and analysis, numerical methods, combinatorics and graph theory, including some applications in probability theory and statistics are presented. Passing Mathematics I-IV will allow the student to deal with basic mathematical concepts and problems and he/she will master the discrete and continuous intuition necessary for the mathematical formulation of real problems. The course Mathematics I, in particular, aims at the principles of mathematics, linear algebra, elementary geometry and some explicit applications.
- Syllabus
- Scalars, scalar functions, combinatorial examples and identities, finite probability, geometric probability, difference equations.
- Motivation geometric problems in space and plane, systems of linear equations, elimination of variables.
- Relations and mappings, injectiv and surjectiv mappings, set cardinality, equivalences and decompositions.
- Vector, vector space, linear independence, basis, linear mappings, matrices, matrix calculus and determinants.
- Algebraical applications: systems of linear equations, linear difference equations, Markov chains
- Geometrical applications: line, plane, parametric versus non-paramteric descriptions, positioning of planes and lines, projective space extension, angle, length, volume.
- Literature
- MOTL, Luboš and Miloš ZAHRADNÍK. Pěstujeme lineární algebru. 3. vyd. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2002, 348 s. ISBN 8024604213. info
- FUCHS, Eduard. Logika a teorie množin (Úvod do oboru). 1. vyd. Brno: Rektorát UJEP, 1978, 175 s. info
- FUCHS, Eduard. Kombinatorika a teorie grafů. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1986, 138 s. info
- RILEY, K.F., M.P. HOBSON and S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004, 1232 pp. ISBN 0 521 89067 5. info
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Masarykova univerzita, 1993, 145 s. ISBN 8021008164. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB101!
- Assessment methods
- Two hours of lectures, two hours of presentations of typical problem solutions and tutorial. Final written test as examination. Results of tutorials/homeworks are partially reflected in the assessment.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught each semester.
Information on the extent and intensity of the course: 2. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2008, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2008/MB101