M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2025
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučováno kontaktně
Vyučující
prof. RNDr. Jan Paseka, CSc. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící)
Mgr. Mária Šimková (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Lineární modely. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • PAVOL, Zlatoš. Lineárna algebra a geometria. Bratislava: Albert Marenčin PT, s.r.o., 2011, 741 s. ISBN 978-80-8114-111-9. info
  • PASEKA, Jan a Pavol ZLATOŠ. Lineární algebra a geometrie I. Elportál. Brno: Masarykova univerzita, 2010. ISSN 1802-128X. URL info
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 6 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Zkouška se skládá z části semestrální, písemky ve zkouškovém období a ústní zkoušky. Z 6 krátkých písemek v semestru je potřeba získat aspoň 50 % bodů. Písemná zkouška ve zkouškovém období má část početní a teoretickou. Studenti, kteří z každé části získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech.
Další komentáře
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2024
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
prof. RNDr. Jan Paseka, CSc. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící)
Mgr. Mária Šimková (cvičící)
doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (pomocník)
doc. Mgr. Jan Koláček, Ph.D. (pomocník)
Garance
prof. RNDr. Jan Paseka, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 19. 2. až Ne 26. 5. St 8:00–9:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 19. 2. až Ne 26. 5. Po 12:00–13:50 M5,01013, M. Čadek
M2110/02: Po 19. 2. až Ne 26. 5. Po 8:00–9:50 M2,01021, M. Čadek
M2110/03: Po 19. 2. až Ne 26. 5. Po 14:00–15:50 M2,01021, J. Paseka
M2110/04: Po 19. 2. až Ne 26. 5. Út 18:00–19:50 M1,01017, M. Šimková
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Lineární modely. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 6 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Zkouška se skládá z části semestrální, písemky ve zkouškovém období a ústní zkoušky. Z 6 krátkých písemek v semestru je potřeba získat aspoň 50 % bodů. Písemná zkouška ve zkouškovém období má část početní a teoretickou. Studenti, kteří z každé části získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2023
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
prof. RNDr. Jan Paseka, CSc. (cvičící)
Mgr. Mária Šimková (cvičící)
doc. Mgr. Jan Koláček, Ph.D. (pomocník)
doc. RNDr. Lenka Přibylová, Ph.D. (pomocník)
Mgr. Richard Smolka (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 12:00–13:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Út 12:00–13:50 M2,01021, M. Čadek
M2110/02: St 14:00–15:50 M1,01017, M. Šimková
M2110/03: Po 14:00–15:50 M1,01017, J. Paseka
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Lineární modely. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 6 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Zkouška se skládá z části semestrální, písemky ve zkouškovém období a ústní zkoušky. Z 6 krátkých písemek v semestru je potřeba získat aspoň 50 % bodů. Písemná zkouška ve zkouškovém období má část početní a teoretickou. Studenti, kteří z každé části získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2022
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
prof. RNDr. Jan Paseka, CSc. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící)
doc. Ilja Kossovskij, Ph.D. (cvičící)
Mgr. Mária Šimková (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 10:00–11:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 16:00–17:50 M1,01017, J. Paseka
M2110/02: St 12:00–13:50 M1,01017, M. Čadek, M. Šimková
M2110/03: Po 12:00–13:50 M1,01017, I. Kossovskij
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2021
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Ilja Kossovskij, Ph.D. (cvičící)
Mgr. Mária Šimková (cvičící)
prof. RNDr. Jan Paseka, CSc. (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 1. 3. až Pá 14. 5. Út 12:00–13:50 online_A
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 1. 3. až Pá 14. 5. St 12:00–13:50 online_M5, M. Čadek
M2110/02: Po 1. 3. až Pá 14. 5. St 14:00–15:50 online_M1, M. Šimková
M2110/03: Po 1. 3. až Pá 14. 5. Po 14:00–15:50 online_M1, I. Kossovskij
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení (částečně) online formou.
Metody hodnocení
Během semestru dostanete 10 domácích úkolů, kde budou zastoupeny i teoretické úlohy. Za každou úlohu můžete získat maximálně 10 bodů. V polovině dubna se bude psát vnitrosemestrální písemka, rovněž za 10 bodů. Samotná zkouška ve zkouškovém období bude mít písemnou část (teoretickou za 10 bodů a početní za 12 bodů) a ústní zkoušku. Splnit požadavky ze semestru znamená získat z domácích úloh aspoň 60 bodů ze 100 možných. Za získání více bodů budete odměněni bonifikací maximálně 4 bodů. Studenti, kteří získají méně než 60, ale aspoň 30 bodů, mohou psát opravnou písemku na začátku zkouškového. Získají-li z ní aspoň polovinu bodů, postupují k písemné části zkoušky s nulovou bonifikací. K ústní zkoušce postoupí studenti, kteří získali v součtu bodů bonifikace + vnitosemestrální písemka+ početní část + teoretická část aspoň 17 bodů z maximálního počtu 4+10+12+10=36 a současně získají aspoň 5 bodů z maximálního počtu 10 z teoretické části.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Během semestru dostanete 10 domácích úkolů, kde budou zastoupeny i teoretické úlohy. Za každou úlohu můžete získat maximálně 10 bodů. V polovině dubna se bude psát vnitrosemestrální písemka, rovněž za 10 bodů. Samotná zkouška ve zkouškovém období bude mít písemnou část (teoretickou za 10 bodů a početní za 12 bodů) a ústní zkoušku. Splnit požadavky ze semestru znamená získat z domácích úloh aspoň 60 bodů ze 100 možných. Za získání více bodů budete odměněni bonifikací maximálně 4 bodů. Studenti, kteří získají méně než 60, ale aspoň 30 bodů, mohou psát opravnou písemku na začátku zkouškového. Získají-li z ní aspoň polovinu bodů, postupují k písemné části zkoušky s nulovou bonifikací. K ústní zkoušce postoupí studenti, k
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2020
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
prof. RNDr. Jan Paseka, CSc. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící)
Mgr. David Kruml, Ph.D. (cvičící)
doc. Mgr. Lenka Zalabová, Ph.D. (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 10:00–11:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Čt 10:00–11:50 M2,01021, J. Paseka
M2110/02: St 18:00–19:50 M1,01017, D. Kruml
M2110/03: St 14:00–15:50 M1,01017, M. Čadek
M2110/04: Út 16:00–17:50 M1,01017, D. Kruml
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2019
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Ilja Kossovskij, Ph.D. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
prof. RNDr. Jan Paseka, CSc. (cvičící)
Mgr. Tomáš Svoboda (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 18. 2. až Pá 17. 5. Út 16:00–17:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 18. 2. až Pá 17. 5. Út 10:00–11:50 M4,01024, T. Svoboda
M2110/02: Po 18. 2. až Pá 17. 5. Pá 14:00–15:50 M2,01021, J. Paseka
M2110/03: Po 18. 2. až Pá 17. 5. Út 14:00–15:50 M2,01021, J. Kaďourek
M2110/04: Po 18. 2. až Pá 17. 5. St 12:00–13:50 M2,01021, J. Kaďourek
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2018
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Lukáš Vokřínek, PhD. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
prof. RNDr. Jan Paseka, CSc. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Pá 12:00–13:50 M5,01013, J. Paseka
M2110/02: Pá 14:00–15:50 M5,01013, J. Paseka
M2110/03: St 8:00–9:50 M4,01024, J. Kaďourek
M2110/04: Út 10:00–11:50 M1,01017, J. Kaďourek
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2017
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
prof. RNDr. Jan Paseka, CSc. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 20. 2. až Po 22. 5. St 12:00–13:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 20. 2. až Po 22. 5. St 10:00–11:50 M2,01021, J. Kaďourek
M2110/02: Po 20. 2. až Po 22. 5. St 14:00–15:50 M2,01021, J. Kaďourek
M2110/03: Po 20. 2. až Po 22. 5. Pá 12:00–13:50 M2,01021, J. Paseka
M2110/04: Po 20. 2. až Po 22. 5. Pá 10:00–11:50 M2,01021, J. Paseka
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Výstupy z učení
Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2016
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Čt 15:00–16:50 M4,01024, M. Čadek
M2110/02: Čt 12:00–13:50 M4,01024, M. Čadek
M2110/04: St 14:00–15:50 M2,01021, J. Kaďourek
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2015
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
prof. RNDr. Jan Paseka, CSc. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Út 12:00–13:50 M5,01013, M. Čadek
M2110/02: Út 16:00–17:50 M5,01013, J. Kaďourek
M2110/03: Čt 10:00–11:50 M2,01021, J. Kaďourek
M2110/04: Pá 9:00–10:50 M4,01024, J. Paseka
M2110/05: Pá 12:00–13:50 M4,01024, J. Paseka
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2014
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Lukáš Vokřínek, PhD. (přednášející)
Mgr. Marek Filakovský, Ph.D. (cvičící)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
prof. RNDr. Jan Paseka, CSc. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 14:00–15:50 M2,01021, M. Čadek
M2110/02: St 12:00–13:50 M5,01013, J. Kaďourek
M2110/03: Út 10:00–11:50 M2,01021, J. Kaďourek
M2110/04: Pá 14:00–15:50 M2,01021, J. Paseka
M2110/05: Pá 12:00–13:50 M2,01021, J. Paseka
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 6 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců. Jiné rozklady matic, singulární a QR rozklad, pseudoinverzní matice
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce, vystaveném v průběhu semestru na webové stránce předmětu a odcvičeném ve cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2013
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
prof. RNDr. Jan Paseka, CSc. (cvičící)
doc. Lukáš Vokřínek, PhD. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Út 14:00–15:50 M2,01021, L. Vokřínek
M2110/02: Čt 12:00–13:50 M2,01021, J. Kaďourek
M2110/03: Čt 14:00–15:50 M2,01021, J. Kaďourek
M2110/04: Pá 10:00–11:50 M2,01021, J. Paseka
M2110/05: Pá 12:00–13:50 M2,01021, J. Paseka
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 15 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2012
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Mgr. Jiří Janda, Ph.D. (cvičící)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
RNDr. Mgr. Miroslav Korbelář, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 8:00–9:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/02: St 12:00–13:50 M5,01013, J. Kaďourek, M. Korbelář
M2110/03: St 18:00–19:50 M2,01021, J. Janda
M2110/04: Pá 12:00–13:50 M1,01017, O. Klíma
M2110/05: Čt 10:00–11:50 M2,01021, M. Čadek
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 11 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška má tři části: semestrální, písemnou a ústní. K přístupu k písemné zkoušce ve zkouškovém období je potřeba splnit podmínky první semestrální část - viz. informace učitele.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
První část zkoušky probíhá v semestru. Na cvičeních se píše 8 písemek. Cvičící budou na každém cvičení zadávat domácí úlohy. Zadání písemek budou velice blízké zadání některého příkladu z domácí úlohy. Z každé písemky je možné získat 2 body. K postupu k písemné zkoušce je potřeba, aby student získal aspoň 8 bodů. Studenti, kterým se to nepodaří, mají možnost opravy na začátku zkouškového období. Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti početní získají aspoň 7 bodů z 12 (k výsledku se připočítává (počet bodu v semestru-8) děleno 2 ) a z teoretické části 5 bodů z 10, postupují k ústní zkoušce. Při ústní zkoušce bude vyžadováno porozumění předneseným tématům, schopnost demonstrovat vyložené pojmy a věty na příkladech a provádět jednoduché důkazy.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2011
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
doc. Lukáš Vokřínek, PhD. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 14:00–15:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Út 10:00–11:50 M5,01013, O. Klíma
M2110/02: St 14:00–15:50 M1,01017, J. Kaďourek
M2110/03: St 16:00–17:50 M1,01017, J. Kaďourek
M2110/04: St 16:00–17:50 M5,01013, L. Vokřínek
M2110/05: St 14:00–15:50 M5,01013, L. Vokřínek
M2110/06: Po 8:00–9:50 M2,01021, M. Čadek
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 12 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška má tři části: písemky v průběhu semestru, písemku ve zkouškovém období a ústní zkoušku. V semestru je nutno získat aspoň 8 bodů z 8 krátkých písemek psaných ve cvičeních. Každá písemka je za 2 body. Body navíc se budou započítávat s váhou 0,5 do výsledku početní části zkouškové písemky.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má tři části: 1. Písemky v semestru: Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. K postupu k druhé části zkoušky musí student v součtu získat aspoń 8 bodů (z celkového počtu 16). Body navíc se budou počítat do výsledku početní části zkouškové písemky s váhou 0,5. 2. Písemka ve zkouškovém: Studenti musí k postupu k ústní zkoušce získat 5 bodů z teoretické části a 6 bodů z početní části. Do početní části se započítává s vahou 0,5 počet bodů nad 8 z předchozích písemek. 3. Ústní zkouška: Při ní bude vyžadováno porozumění předneseným tématům, schopnost demonstrovat vyložené pojmy a věty na příkladech a schopnost dokázat základní věty.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2010
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Josef Šilhan, Ph.D. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
Mgr. David Kruml, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: St 14:00–15:50 M5,01013, J. Šilhan
M2110/02: Čt 14:00–15:50 M2,01021, O. Klíma
M2110/03: Čt 16:00–17:50 M2,01021, O. Klíma
M2110/04: Čt 8:00–9:50 M1,01017, D. Kruml
M2110/05: Rozvrh nebyl do ISu vložen. J. Šilhan
M2110/06: Čt 11:00–12:50 M4,01024, D. Kruml
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 12 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2009
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Mgr. Oldřich Spáčil (cvičící)
Mgr. Radek Šlesinger, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
St 11:00–12:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 17:00–18:50 M1,01017, O. Spáčil
M2110/02: Út 16:00–17:50 M1,01017, R. Šlesinger
M2110/03: St 18:00–19:50 M5,01013, O. Spáčil
M2110/04: Út 18:00–19:50 M1,01017, R. Šlesinger
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 11 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2008
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Ing. Mgr. Dávid Dereník (cvičící)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Čt 15:00–16:50 U-aula
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 14:00–15:50 UP1, J. Kaďourek
M2110/02: Čt 17:00–18:50 UP1, D. Dereník
M2110/03: St 10:00–11:50 N41, O. Klíma
M2110/04: Út 8:00–9:50 UP2, O. Klíma
M2110/05: Út 10:00–11:50 UP2, O. Klíma
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 11 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10 nebo 11, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń polovinu z celkového počtu bodů na udělení zápočtu.
Další komentáře
Studijní materiály
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2007
Rozsah
2/2/0. 4 kr. (plus 2 za zk). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
RNDr. Jan Vondra, Ph.D. (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Rozvrh
Čt 12:00–13:50 U-aula
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 15:00–16:50 UP1, J. Kaďourek
M2110/03: Čt 8:00–9:50 UP1, O. Klíma
M2110/04: St 10:00–11:50 UP1, O. Klíma
M2110/05: St 8:00–9:50 UP1, O. Klíma
Předpoklady
M1110 Lineární algebra I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 11 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2006
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
Mgr. Michaela Vokřínková (cvičící)
RNDr. Jan Vondra, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Rozvrh
St 15:00–16:50 U-aula
  • Rozvrh seminárních/paralelních skupin:
M2110/01: St 11:00–12:50 UP2, M. Vokřínková
M2110/02: St 9:00–10:50 UP2, M. Vokřínková
M2110/03: St 11:00–12:50 UP1, O. Klíma
M2110/04: St 9:00–10:50 UP1, O. Klíma
M2110/05: Čt 14:00–15:50 UP1, J. Vondra
Předpoklady
M1110 Lineární algebra I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 11 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2005
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Jaroslav Hrdina, Ph.D. (cvičící)
Mgr. David Kruml, Ph.D. (cvičící)
RNDr. Jan Vondra, Ph.D. (cvičící)
doc. Mgr. Lenka Zalabová, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Rozvrh
Čt 14:00–15:50 U-aula
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Po 16:00–17:50 UP2, D. Kruml
M2110/02: St 12:00–13:50 UM, J. Hrdina
M2110/03: Po 8:00–9:50 UP2, J. Hrdina
M2110/04: Čt 16:00–17:50 UM, L. Zalabová
M2110/05: Čt 12:00–13:50 U1, J. Vondra
Předpoklady
M1110 Lineární algebra I
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2004
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
doc. Mgr. Vojtěch Žádník, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Rozvrh
Čt 14:00–15:50 aula Údolní
  • Rozvrh seminárních/paralelních skupin:
M2110/01: Rozvrh nebyl do ISu vložen. M. Čadek
M2110/02: Po 9:00–10:50 UK, O. Klíma
M2110/03: Po 11:00–12:50 UK, O. Klíma
M2110/04: Po 16:00–17:50 U1, V. Žádník
Předpoklady
M1110 Lineární algebra I
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2003
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
RNDr. Jarmila Elbelová, Ph.D. (cvičící)
Mgr. Michal Fikera (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Rozvrh seminárních/paralelních skupin
M2110/01: Rozvrh nebyl do ISu vložen. M. Fikera
M2110/02: Rozvrh nebyl do ISu vložen. J. Elbelová
M2110/03: Rozvrh nebyl do ISu vložen. J. Elbelová
Předpoklady
M1110 Lineární algebra I
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii a při klasifikaci kuželoseček a kvadrik. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti, kuželosečky a kvadratické plochy a jejich afinní klasifikace. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla, geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách, metrická klasifikace kuželoseček a kvadrik. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní.
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 11, za každou se budou udělovat maximálně 2 body. Každý student by měl psát aspoň 9 písemek (tedy jsou povoleny 2 absence) a v součtu získat 9 bodů (z celkového počtu 22) na udělení zápočtu.
Další komentáře
Poznámka k ukončení předmětu: Studenti programu matematika a aplikovaná matematika si musejí zapsat zkoušku.
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra II

Přírodovědecká fakulta
jaro 2002
Rozsah
3/2/0. 8 kr. Ukončení: zk.
Vyučující
doc. RNDr. Josef Niederle, CSc. (přednášející)
doc. Mgr. Vojtěch Žádník, Ph.D. (cvičící)
Garance
prof. RNDr. Jan Paseka, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Josef Niederle, CSc.
Předpoklady
M1110 Lineární algebra I
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Osnova
  • Bilineární, kvadradické a hermitovské formy
  • Afinní klasifikace kuželoseček
  • Skalární součin, euklidovské a unitární prostory
  • Euklidovská geometrie
  • Vlastní čísla a vlastní vektory
  • Jordanův kanonický tvar
  • Ortogonální a unitární operátory
  • Samoadjungované operátory a jejich vlstní čísla
  • Věta o hlavních osách, metrická klasifikace kuželoseček
  • Lineární grupy
  • Projektivní prostory
Informace učitele
2002 Zkouška bude písemná, z látky probrané na přednášce a ve cvičení.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra II

Přírodovědecká fakulta
jaro 2001
Rozsah
3/2/0. 8 kr. Ukončení: zk.
Vyučující
doc. RNDr. Pavol Zlatoš, CSc. (přednášející)
prof. RNDr. Jan Paseka, CSc. (cvičící)
Garance
doc. RNDr. Pavol Zlatoš, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Pavol Zlatoš, CSc.
Předpoklady
M1110 Lineární algebra I
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
1.Analytická geometrie I, afinní prostory. Afinní prostory Rn a Cn a jejich podprostory, obecné vlastnosti, řešení základních úloh. 2.Prostory se skalárním součinem. (Skalární součin, ortogonalita, Grammův-Schmidtův ortogonalizační proces, unitární a ortogonální zobrazení. 3.Analytická geometrie II, euklidovské prostory. Bodové euklidovské prostory, standardní úlohy, odchylky podprostorů. 4.Lineární a kvadratické formy. Duální vektorový prostor, duální báze, bilineární a multilineární zobrazení, vlastnosti bilineárních a kvadratických forem, hermitovské formy. 5.Spektrální teorie. Základní vlastnosti samoadjungovaných a idempotentních zobrazení, ortogonální klasifikace kvadratických forem. 6.Analytická geometrie III, aplikace. Determinant, orientace a objem, kuželosečky a kvadriky, projektivní rozšíření. 7.Kanonické tvary. Diskuse různých kanonických tvarů, vybrané aplikace. Vhodná rozšíření a dodatky (pokryto elektronickými učebními texty): Ad 4. Rozklad na vlastní a kořenové podprostory, geometrické odvození Jordanova kanonického tvaru endomorfismu, komplexifikace reálných vektorových prostorů a lineárních zobrazení. Ad 9. Diskuse dalších typů zobrazení a odpovídajících matic. Ad 11. Algebraický přístup k Jordanovu kanonickému tvaru. Tenzory. Tenzory jako multilineární zobrazení, tenzorový součin, symetrické a antisymetrické tenzory, vnější tenzorový součin.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra II

Přírodovědecká fakulta
jaro 2000
Rozsah
3/2/0. 8 kr. Ukončení: zk.
Vyučující
prof. RNDr. Jan Slovák, DrSc. (přednášející)
Garance
prof. RNDr. Jan Slovák, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. RNDr. Jan Slovák, DrSc.
Předpoklady
M1110 Lineární algebra I
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Osnova
  • 1.Analytická geometrie I, afinní prostory. Afinní prostory Rn a Cn a jejich podprostory, obecné vlastnosti, řešení základních úloh. 2.Prostory se skalárním součinem. (Skalární součin, ortogonalita, Grammův-Schmidtův ortogonalizační proces, unitární a ortogonální zobrazení. 3.Analytická geometrie II, euklidovské prostory. Bodové euklidovské prostory, standardní úlohy, odchylky podprostorů. 4.Lineární a kvadratické formy. Duální vektorový prostor, duální báze, bilineární a multilineární zobrazení, vlastnosti bilineárních a kvadratických forem, hermitovské formy. 5.Spektrální teorie. Základní vlastnosti samoadjungovaných a idempotentních zobrazení, ortogonální klasifikace kvadratických forem. 6.Analytická geometrie III, aplikace. Determinant, orientace a objem, kuželosečky a kvadriky, projektivní rozšíření. 7.Kanonické tvary. Diskuse různých kanonických tvarů, vybrané aplikace. Vhodná rozšíření a dodatky (pokryto elektronickými učebními texty): Ad 4. Rozklad na vlastní a kořenové podprostory, geometrické odvození Jordanova kanonického tvaru endomorfismu, komplexifikace reálných vektorových prostorů a lineárních zobrazení. Ad 9. Diskuse dalších typů zobrazení a odpovídajících matic. Ad 11. Algebraický přístup k Jordanovu kanonickému tvaru. Tenzory. Tenzory jako multilineární zobrazení, tenzorový součin, symetrické a antisymetrické tenzory, vnější tenzorový součin.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Ing. Mgr. Dávid Dereník (cvičící)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M1110 Lineární algebra a geom. I || M1111 Lineární algebra a geom. I ||( FI:MB003 Lineární algebra )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 12 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutné získat 50% bodů z 8 krátkých písemek psaných v průběhu semestru na cvičeních.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají předepsaný bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 8, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 8 bodů (z celkového počtu 16) na udělení zápočtu.
Další komentáře
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2011 - akreditace
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
Ing. Mgr. Dávid Dereník (cvičící)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M1110 Lineární algebra I || M1111 Lineární algebra I ||( FI:MB003 Lineární algebra a geometrie I )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 12 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy lineární algebry. Po absolvování kurzu studenti *budou dobře tereticky i početně ovládat afinní prostory, bilineární a kvadratické formy, vlastní čísla a vlastní vektory, *budou schopni řešit úlohy na prostory se skalárním součinem, ortogonální, unitární a samoadjungované operátory a *budou umět hledat Jordanův kanonický tvar.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Výukové metody
Přednášky a cvičení.
Metody hodnocení
Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.

M2110 Lineární algebra a geometrie II

Přírodovědecká fakulta
jaro 2008 - akreditace
Rozsah
2/2/0. 4 kr. (příf plus uk plus > 4). 2 kr. zápočet. Doporučované ukončení: zk. Jiná možná ukončení: z.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. RNDr. Jiří Kaďourek, CSc. (cvičící)
doc. Mgr. Ondřej Klíma, Ph.D. (cvičící)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc.
Předpoklady
M1110 Lineární algebra I ||( FI:MB003 Lineární algebra a geometrie I )
Předpokládá se znalost základních pojmů lineární algebry.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 11 mateřských oborů, zobrazit
Cíle předmětu
Cílem tohoto druhého kurzu z lineární algebry je seznámit studenty s dalšími základními pojmy jako jsou afinní prostor, bilineární a kvadratické formy, vlastní čísla a vlastní vektory lineárních operátorů. Podrobněji se probírají prostory se skalárním součinem a vlastnosti ortogonálních, unitárních a samoadjungovaných operátorů. Tyto partie jsou aplikovány v afinní a euklidovské geometrii. Závěr je věnován Jordanovu kanonickému tvaru.
Osnova
  • Afinní geometrie: afinní prostory a podprostory, vzájemná poloha, geometrické úlohy, afinní zobrazení. Lineární formy: definice, duální vektorový prostor, duální báze a duální lineární zobrazení. Bilineární a kvadratické formy: definice, matice vzhledem k dané bázi, diagonalizace, signatura, Sylvestrův zákon setrvačnosti. Euklidovká geometrie: kolmá projekce, vzdálenost a odchylka afinních podprostorů. Lineární operátory: invariantní podprostory, vlastní čísla a vektory, charakteristický polynom, algebraická a geometrická násobnost vlastních čísel, podmínky diagonalizovatelnosti. Ortogonální a unitární operátory: definice a základní vlastnosti,vlastní čísla a jejich geometrický význam. Samoadjungované operátory: adjungovaný operátor, symetrické a hermitovské matice, spektrální rozklad, věta o hlavních osách. Jordanův kanonický tvar: nilpotentní endomorfismy, kořenové podprostory, výpočet pomocí řetězců.
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v Bratislavě, elektronicky dostupné na http://www.math.muni.cz/pub/math/people/Paseka/lectures/LA/
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
Metody hodnocení
Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
Navazující předměty
Informace učitele
http://www.math.muni.cz/~cadek
Písemná zkouška má část početní a teoretickou. Studenti, kteří z každé časti získají aspoň 50 % bodů, postupují k ústní zkoušce. Při ní bude vyžadováno porozumění předneseným tématům a schopnost demonstrovat vyložené pojmy a věty na příkladech. Ke zkoušce je potřeba získat zápočet ze cvičení. Cvičící budou na každém cvičení zadávat domácí úlohy. Na začátku následujícího cvičení se bude psát krátká písemka (maximálně 15 minut). Její zadání bude velice blízké zadání některého příkladu z domácí úlohy. Těchto písemek bude celkem 10, za každou se budou udělovat maximálně 2 body. Každý student by měl v součtu získat aspoń 10 bodů (z celkového počtu 20) na udělení zápočtu.
Další komentáře
Poznámka k ukončení předmětu: ukončení zápočtem možné pouze rozhodnutím učitele
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.