M6150 Lineární funkcionální analýza I

Přírodovědecká fakulta
jaro 2006
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
Garance
prof. Alexander Lomtatidze, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: prof. Alexander Lomtatidze, DrSc.
Rozvrh
Út 12:00–13:50 UP2
  • Rozvrh seminárních/paralelních skupin:
M6150/01: Út 14:00–14:50 UP2, A. Lomtatidze
Předpoklady
M3100 Matematická analýza III && M4170 Míra a integrál
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit posluchače se základními pojmy lineární funkcionální analýzy, zejména s lineárními prostory, jejich adjungovanými prostory a s lineárními funkcionály.
Osnova
  • 1. Metrický prostor. Definice, příklady. Podmnožiny, klasifikace bodů. Konvergence. Úplnost, kompaktnost, spočetná kompaktnost, kompaktnost v některých prostorech. 2. Lineární prostor. Definice, příklady. Normovaný prostor. Unitární prostor. Besselova nerovnost. Rieszova-Fischerova věta. Hilbertův prostor. Charakteristická vlastnost unitárních prostorů. 3. Funkcionály. Definice, příklady. Geometrický význam lineárního funkcionálu. Konvexní množiny a konvexní funkcionály. Hahnova-Banachova věta a její aplikace. Spojité lineární funkcionály. Hahnova-Banachova věta v normovaném prostoru. 4. Adjungovaný prostor. Definice, příklady. Úplnost. Prostor adjungované k Hilbertovému prostoru. Druhý adjungovaný prostor. Banachova-Steinhausova věta, slabá konvergence. 5. Slabá konvergence a ohraničené množiny v adjungovaném prostoru.
Literatura
  • Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
  • KOLMOGOROV, Andrej Nikolajevič a Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2012 - akreditace, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.