M6150 Funkcionální analýza I

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
2/1/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
Garance
prof. Alexander Lomtatidze, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
M3100 Matem. analýza III && M4170 Míra a integrál
Matematická analýza: Diferenciální počet funkcí jedné i více proměnných, integrální počet, číselné a funkční posloupnosti a řady. Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Funkcionální analýza patří mezi základní univerzitní kurzy matematiky. Je využívána v řadě dalších předmětů i v mnoha aplikacích. Cílem předmětu je seznámit posluchače se základními pojmy lineární funkcionální analýzy, zejména s lineárními prostory, jejich djungovanými prostory a s lineárními funkcionály. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy souvicející s probíranou tématikou.
Osnova
  • 1. Metrický prostor. Definice, příklady. Podmnožiny, klasifikace bodů. Konvergence. Úplnost, kompaktnost, spočetná kompaktnost, kompaktnost v některých prostorech. 2. Lineární prostor. Definice, příklady. Normovaný prostor. Unitární prostor. Besselova nerovnost. Rieszova-Fischerova věta. Hilbertův prostor. Charakteristická vlastnost unitárních prostorů. 3. Funkcionály. Definice, příklady. Geometrický význam lineárního funkcionálu. Konvexní množiny a konvexní funkcionály. Hahnova-Banachova věta a její aplikace. Spojité lineární funkcionály. Hahnova-Banachova věta v normovaném prostoru. 4. Adjungovaný prostor. Definice, příklady. Úplnost. Prostor adjungované k Hilbertovému prostoru. Druhý adjungovaný prostor. Banachova-Steinhausova věta, slabá konvergence. 5. Slabá konvergence a ohraničené množiny v adjungovaném prostoru.
Literatura
  • Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
  • ZEIDLER, Eberhard. Applied functional analysis : main principles and their applications. New York: Springer-Verlag, 1995, xvi, 404. ISBN 0387944222. info
  • KOLMOGOROV, Andrej Nikolajevič a Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
Výukové metody
přednášky a cvičení
Metody hodnocení
Výuka: přednáška 2 hod. týdně, cvičení 1 hod. týdně. Zkouška: písemná a ústní.
Navazující předměty
Informace učitele
Předmět je ukončen zkouškou, která má dvě části - ústní a písemnou. Požadavky na úspěšné zakončení předmětu: Písemná část zkoušky představuje zpracování zadaného tématu jako přípravu k části ústní. V průběhu ústní zkoušky je požadováno pochopení zavedených pojmů, porozumění vyloženým větám a schopnost jejich formulace. Je vyžadována znalost jednodušších důkazů a myšlenkových postupů složitějších důkazů.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020, jaro 2021, jaro 2022, jaro 2023, jaro 2024, jaro 2025.