M2510 Matematická analýza 2

Přírodovědecká fakulta
jaro 2012 - akreditace

Údaje z období jaro 2012 - akreditace se nezveřejňují

Rozsah
2/2/0. 3 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Josef Kalas, CSc. (přednášející)
Garance
doc. RNDr. Eduard Fuchs, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Předpoklady
Znalost diferenciálního počtu funkce jedné proměnné.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Hlavním cílem kurzu je porozumět hlavním pojmům, výsledkům a technikám výpočtů integrálního počtu funkcí jedné projměnné.
Po absolvování kurzu studenti budou schopni:
definovat a interpretovat určité i neurčité integrály;
užívat efektivní techniky integrace funkcí jedné proměnné;
aplikovat získaníé poznatky o integrálech k řešení konkrétních úloh, především z geometrie a fyziky.
Osnova
  • Posloupnosti, diferenciál funkce, Taylorova věta. Primitivní funkce, základní integrační metody. Integrace racionálních lomenných, trigonometrických a některých iracionálních funkcí. Riemannův určitý integrál a jeho geometrické aplikace. Nevlastní integrály.
Literatura
  • Integrální počet. Edited by Vojtěch Jarník. Vyd. 5. nezměn. Praha: Academia, 1974, 243 s. URL info
  • NOVÁK, Vítězslav. Integrální počet v R. 2. vyd. Brno: Masarykova univerzita, 1994, 148 s. ISBN 8021009918. info
  • DULA, Jiří a Jiří HÁJEK. Cvičení z matematické analýzy : Riemannův integrál. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 84 s. info
  • Kuben, Jaromír - Hošková, Šárka - Račková, Pavlína. Integrální počet funkcí jedné proměnné; VŠB-TU Ostrava, elektronický text vytvořený v rámci projektu CZ.04.1.03/3.2.15.1/0016 ESF ČR. Dostupné z: http://homel.vsb.cz/~s1a64/cd/pdf/print/ip.pdf.
Výukové metody
Dvouhodinová přednáška a cvičení ve skupinách.
Metody hodnocení
2 písemné testy. Zkouška s písemnou i ústní částí.
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2011 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019.