PřF:M2B02 Difer. a integr. počet II - Informace o předmětu
M2B02 Diferenciální a integrální počet II
Přírodovědecká fakultajaro 2015
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Ukončení: zk.
- Vyučující
- doc. Mgr. Peter Šepitka, Ph.D. (přednášející)
Mgr. Milan Bačík (cvičící) - Garance
- prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 16:00–17:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- Úspěšné absolvování předmětu MB102.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematická biologie (program PřF, B-EXB)
- Cíle předmětu
- Pokračování předmětu MB102. Kurz je věnován diferenciálnímu a integrálnímu počtu funkcí více proměnných a funkčním řadám. Po úspěšném absolvování tohoto kurzu bude student schopen: definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení; vysvětlit metody důkazů základních tvrzení; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy související s probíranou tématikou.
- Osnova
- Funkce více proměnných
- Limity a spojitost funkci více proměnných
- Parciální derivace, směrové derivace, diferenciál pro funkce více proměnných
- Lokální a globální extrémy pro funkcí více proměnných
- Riemannův dvojný integrál na obdélníku
- Dvojný a trojný integrál na měřitelné množině, Fubiniho věta
- Zakladní transformace ve dvojném a trojném integrálu
- Integrál závislý na parametru
- Funkční řady
- Literatura
- doporučená literatura
- DOŠLÁ, Zuzana a Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
- PLCH, Roman, Zuzana DOŠLÁ a Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. prvni. Brno: Masarykova Universita, 1999, 80 s. ISBN 80-210-2203-5. URL info
- KUBEN, Jaromír, Šárka MAYEROVÁ, Pavlína RAČKOVÁ a Petra ŠARMANOVÁ. Diferenciální počet funkcí více proměnných. 2012. URL info
- RÁB, Miloš. Zobrazení a Riemannův integrál v En. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1988, 97 s. info
- KALAS, Josef a Jaromír KUBEN. Integrální počet funkcí více proměnných. 1. vyd. Brno: Masarykova univerzita, 2009, vi, 272. ISBN 9788021049758. info
- NOVÁK, Vítězslav a Zuzana DOŠLÁ. Nekonečné řady. 1. vyd. Brno: Masarykova univerzita v Brně, 1998, 120 s. skripta. ISBN 80-210-1949-2. info
- DOŠLÁ, Zuzana, Roman PLCH a Petr SOJKA. Matematická analýza s programem Maple. Díl 2, Nekonečné řady. prvni. Brno: Masarykova univerzita, 2002, 453 s. Matematická analýza s programem Maple, 2. ISBN 80-210-3005-4. Domovská stránka projektu Domovská stránka Díl 1. info
- Výukové metody
- přednášky (2 hodiny týdně) a cvičení (2 hodiny týdně)
- Metody hodnocení
- Zkouška se skládá ze dvou hlavních částí:
(i) písemná (teoretická část formou testu s možností výběru + praktická část; délka 120 minut)
(ii) ústní.
Maximální bodový zisk činí 100 bodů (25 bodů ze cvičení + 10 bodů z teoretické části + 35 bodů z praktické části + 30 bodů z ústní části). Pro úspěšné ukončení předmětu je potřeba získat alespoň 50 bodů, přičemž ze cvičení je nutné mít nejméně 10 bodů, z teoretické části nejméně 4 body a nenulový počet bodů z ústní části. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (jaro 2015, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/jaro2015/M2B02