PřF:M3130 Lineární algebra III - Informace o předmětu
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2006
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Jaroslav Hrdina, Ph.D. (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc. - Rozvrh
- Po 8:00–9:50 N21
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2006, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2006/M3130