M1110 Lineární algebra a geometrie I

Přírodovědecká fakulta
podzim 2020
Rozsah
2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Jan Koláček, Ph.D. (přednášející)
doc. RNDr. Lenka Přibylová, Ph.D. (přednášející)
doc. Ilja Kossovskij, Ph.D. (cvičící)
Mgr. Mária Šimková (cvičící)
prof. RNDr. Jan Paseka, CSc. (pomocník)
Mgr. Radovan Vavrek (pomocník)
Garance
doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 10:00–11:50 A,01026
  • Rozvrh seminárních/paralelních skupin:
M1110/01: Út 14:00–14:50 M1,01017, St 14:00–15:50 M2,01021, M. Čadek
M1110/02: Po 14:00–15:50 M2,01021, I. Kossovskij
M1110/03: Pá 14:00–15:50 M2,01021, I. Kossovskij
M1110/04: Út 8:00–9:50 M2,01021, M. Šimková
M1110/05: St 14:00–15:50 M3,01023, M. Šimková
Předpoklady
Středoškolská matematika
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Lineární algebra patří k základům matematického vzdělání. Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, *budou schopni tyto pojmy běžně používat v dalším studiu, *naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
Výstupy z učení
Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, * budou schopni tyto pojmy běžně používat v dalším studiu, * naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
Osnova
  • Vektorové prostory. Operace s maticemi. Gaussova eliminace. Podprostory. Lineární nezávislost. Báze a dimenze. Souřadnice. Lineární zobrazení. Matice lineárního zobrazení. Soustavy lineárních rovnic. Determinanty. Afinní podprostory
Literatura
  • Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v~Bratislavě, elektronicky dostupné na http://thales.doa.fmph.uniba.sk/katc/
  • HORÁK, Pavel. Úvod do lineární algebry. 3. vyd. Brno: Rektorát UJEP Brno, 1980, 135 s. info
  • Anton H., Rorres.C.: Elementary Linear Agebra, 8th edition, Application Version, Wiley, 2000, ISBN 0471170526.
  • ŠMARDA, Bohumil. Lineární algebra. Praha: Státní pedagogické nakladatelství, 1985, 159 s. info
  • ŠIK, František. Lineární algebra zaměřená na numerickou analýzu. Vyd. 1. Brno: Masarykova univerzita v Brně, 1998, 177 s. ISBN 8021019662. info
  • Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
  • HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
Výukové metody
Přednášky, cvičení a domácí úlohy.
Metody hodnocení
Zkouška má tři části. 1. část: V průběhu semestru dostanou studenti 12 domácích úkolů, z každého mohou získat 10 bodů. Student musí získat za semestr aspoň polovinu z maximálního počtu bodů, tj. 60 bodů. Nepodaří-li se mu to, bude psát opravnou písemku na začátku zkouškového období. Z té musí získat polovinu bodů. 2. část: Splní-li student předpoklady 1. části zkoušky, může se přihlásit k písemné části zkoušky ve zkouškovém období. Písemka má část početní a teoretickou. V části teoretické je potřeba získat 5 bodů z 10, v části početní 7 bodů z 12. K výsledku početní části se přičte bonifikace za domácí úlohy u těch studentů, kteří dosáhli více než 60 bodů. Velikost bonifikace v bodech činí: (počet bodů za DU-60) děleno 15 a zaokrouhleno na poloviny bodů směrem dolů. 3. částí zkoušky je ústní zkouška, ke které student postoupí, když splní předpoklady druhé části zkoušky. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce a cvičení, v případě distanční výuky vystaveném v průběhu semestru na webové stránce předmětu.
Navazující předměty
Informace učitele
Na podzim 2020 budou do odvolání probíhat přednášky online formou v době podle rozvrhu. Cvičení začneme prezenční formou, v případě nutnosti přejdeme na online formu. Metody hodnocení - viz výše. Aktuální informace najdete v úvodní části interaktivní osnovy. Rovněž se budou posílat emailem.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 1999, podzim 2010 - akreditace, podzim 2000, podzim 2001, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2021, podzim 2022, podzim 2023, podzim 2024.