PřF:M1110 Lineární algebra a geom. I - Informace o předmětu
M1110 Lineární algebra a geometrie I
Přírodovědecká fakultapodzim 2022
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
- Vyučující
- prof. RNDr. Jan Paseka, CSc. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící)
doc. Ilja Kossovskij, Ph.D. (cvičící)
Mgr. David Kruml, Ph.D. (pomocník)
Mgr. Richard Smolka (pomocník) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 8:00–9:50 A,01026
- Rozvrh seminárních/paralelních skupin:
M1110/02: Út 14:00–15:50 M2,01021, I. Kossovskij
M1110/03: Po 16:00–17:50 M2,01021, J. Paseka
M1110/04: Pá 12:00–13:50 M4,01024, I. Kossovskij - Předpoklady
- Středoškolská matematika
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 6 mateřských oborů, zobrazit
- Cíle předmětu
- Lineární algebra patří k základům matematického vzdělání. Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, *budou schopni tyto pojmy běžně používat v dalším studiu, *naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
- Výstupy z učení
- Na konci tohoto kurzu *budou studenti rozumět základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, * budou schopni tyto pojmy běžně používat v dalším studiu, * naučí se početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic.
- Osnova
- Vektorové prostory. Operace s maticemi. Gaussova eliminace. Podprostory. Lineární nezávislost. Báze a dimenze. Souřadnice. Lineární zobrazení. Matice lineárního zobrazení. Soustavy lineárních rovnic. Determinanty. Afinní podprostory
- Literatura
- Zlatoš P.: Lineárna algebra a geometria, připravovaná skripta MFF Univerzity Komenského v~Bratislavě, elektronicky dostupné na http://thales.doa.fmph.uniba.sk/katc/
- HORÁK, Pavel. Úvod do lineární algebry. 3. vyd. Brno: Rektorát UJEP Brno, 1980, 135 s. info
- Anton H., Rorres.C.: Elementary Linear Agebra, 8th edition, Application Version, Wiley, 2000, ISBN 0471170526.
- ŠMARDA, Bohumil. Lineární algebra. Praha: Státní pedagogické nakladatelství, 1985, 159 s. info
- ŠIK, František. Lineární algebra zaměřená na numerickou analýzu. Vyd. 1. Brno: Masarykova univerzita v Brně, 1998, 177 s. ISBN 8021019662. info
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na http://www.math.muni.cz/~slovak.
- HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
- Výukové metody
- Přednášky, cvičení a domácí úlohy.
- Metody hodnocení
- Zkouška má tři části. 1. část: V průběhu semestru dostanou studenti 6 domácích úkolů, z každého mohou získat 10 bodů. Student musí získat za semestr aspoň polovinu z maximálního počtu bodů, tj. 30 bodů. Nepodaří-li se mu to, bude psát opravnou písemku na začátku zkouškového období. Z té musí získat polovinu bodů. 2. část: Splní-li student předpoklady 1. části zkoušky, může se přihlásit k písemné části zkoušky ve zkouškovém období. Písemka má část početní a teoretickou. V části teoretické je potřeba získat 5 bodů z 10, v části početní 7 bodů z 12. K výsledku početní části se přičte bonifikace za domácí úlohy u těch studentů, kteří dosáhli více než 30 bodů. Podle počtu bodů studenti dostanou bonifikaci k početní části písemky takto: Součet bodů za DU Bonifikace 30 - 33 0 34 - 37 0,5 38 - 41 1 42 - 45 1,5 46 - 48 2 49 - 51 2,5 52 - 54 3 55 - 57 3,5 58 - 60 4 3. částí zkoušky je ústní zkouška, ke které student postoupí, když splní předpoklady druhé části zkoušky. Požadavky ke zkoušce: zvládnutí problematiky v rozsahu odučeném na přednášce a cvičení, v případě distanční výuky vystaveném v průběhu semestru na webové stránce předmětu. Budete tázáni na definice, věty, příklady, ale i důkazy. Klade se důraz na porozumění, nestačí znalost definic a vět, chtějí se příklady na definované pojmy a hlavní věty. Je požadovaná schopnost provádět jednoduché důkazy. Zde je seznam témat, která jsou vyžadována bezpodmínečně. Jejich neznalost znamená, že u zkoušky neuspějete: 1. Pojem vektorového prostoru, znalost příkladů. 2. Pojem vektorového podprostoru, příklady, součet a průnik. 3. Pojem lineární nezávislosti vektorů, příklady. 4. Pojem lineárního obalu, příklady. 5. Vysvětlení algoritmu, který ze seznamu vektorů vybere lineárně nezávislé se stejným lineárním obalem. 6. Báze vektorového prostoru, souřadnice vektoru v dané bázi, dimenze, příklady. 7. Lineární zobrazení, jádro, obraz, příklady. 8. Hodnost matice. 9. Řešení soustav lineárních rovnic, věty o struktuře řešení, příklady na tyto věty. 10. Definice determinantu pomocí jeho vlastností.
- Navazující předměty
- Informace učitele
- Na podzim 2021 budou do odvolání probíhat přednášky prezenční formou v době podle rozvrhu. Cvičení začneme prezenční formou, v případě nutnosti přejdeme na online formu. Metody hodnocení - viz výše. Aktuální informace najdete v úvodní části interaktivní osnovy. Rovněž se budou posílat emailem.
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- M2110 Lineární algebra a geometrie II
M1110||M1111||(FI:MB003) - M2110B Lineární algebra a geometrie II
M1110||M1111||(FI:MB003) - M5858 Spojité deterministické modely I
(M1110||M1111) && (M1100||M1101||FI:MB000||M1100F)||FI:MB103||FI:MB203||MB103v||FI:MB102||M2B02 - M7190 Teorie her
M1110 || M1111 || FI:MB101 || FI:MB201 || FI:MB003 - FI:MB153 Statistika I
(MB151 || MB152 || PřF:M1110 || PřF:M1100) && !NOW(MB143) - FI:MB154 Diskrétní matematika
MB151 || MB152 || PřF:M1110 || PřF:M1100
- M2110 Lineární algebra a geometrie II
- Statistika zápisu (podzim 2022, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2022/M1110