M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2024
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučováno kontaktně - Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící) - Garance
- doc. Lukáš Vokřínek, PhD.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 14:00–15:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům:
- polyedrům a optimalizaci lineárních funkcí na polyedrech,
- multilineární algebře a tenzorům,
- celočíselnám a polynomiálním maticím a jejich vztahu s Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace. - Výstupy z učení
- Na konci tohoto kurzu bude student schopen:
- rozumět struktuře polyedrů a řešit úlohu lineárního programování pomocí simplexové metody;
- počítat s tenzory v souřadnicích i bez nich;
- nalézt Smithův normální tvar matice a interpretovat jej, zejména z něj odvodit Jordanův kanonický tvar - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru.
- Polyedrální kužely a polyedry: různé definice a jejich porovnání, Farkasovo lemma, stěny polyedrů, úloha lineárního programování, dualita v lineárním programování, simplexová metoda
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Celočíselné a polynomiální matice: Smithův normální tvar, souvislost s prezentací komutativních grup, klasifikace konečně generovaných komutativních grup, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Pro připuštění k závěrečné zkoušce je nutné krom dostatečné účasti na cvičení (max 3 neúčasti; účast bude doplněna odevzdáváním domácích úloh v případě distanční výuky) také dosáhnout celkově více než poloviny bodů ze dvou písemek, které se budou psát během semestru ve cvičeních.
Závěrečná zkouška se sestává z písemné a ústní části. Z písemné části je potřeba získat aspoň 50% bodů. V případě ukončení předmětu kolokviem budou studenti pouze psát písemnou část. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~koren
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů.
Na cvičeních se budou psát dvě písemky. Zápočet bude udělen, pokud student splní podmínky na účast ve cvičeních (příp. na domácí úlohy) a zároveň za tyto písemky obdrží více než polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2023
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Lukáš Vokřínek, PhD. (přednášející)
Joanna Ko, M.Sc. (cvičící) - Garance
- doc. Lukáš Vokřínek, PhD.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 8:00–9:50 M6,01011
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům:
- polyedrům a optimalizaci lineárních funkcí na polyedrech,
- multilineární algebře a tenzorům,
- celočíselnám a polynomiálním maticím a jejich vztahu s Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace. - Výstupy z učení
- Na konci tohoto kurzu bude student schopen:
- rozumět struktuře polyedrů a řešit úlohu lineárního programování pomocí simplexové metody;
- počítat s tenzory v souřadnicích i bez nich;
- nalézt Smithův normální tvar matice a interpretovat jej, zejména z něj odvodit Jordanův kanonický tvar - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru.
- Polyedrální kužely a polyedry: různé definice a jejich porovnání, Farkasovo lemma, stěny polyedrů, úloha lineárního programování, dualita v lineárním programování, simplexová metoda
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Celočíselné a polynomiální matice: Smithův normální tvar, souvislost s prezentací komutativních grup, klasifikace konečně generovaných komutativních grup, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Pro připuštění k závěrečné zkoušce je nutné krom dostatečné účasti na cvičení (max 3 neúčasti; účast bude doplněna odevzdáváním domácích úloh v případě distanční výuky) také dosáhnout celkově více než poloviny bodů ze dvou písemek, které se budou psát během semestru ve cvičeních.
Závěrečná zkouška se sestává z písemné a ústní části. Z písemné části je potřeba získat aspoň 50% bodů. V případě ukončení předmětu kolokviem budou studenti pouze psát písemnou část. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~koren
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů.
Na cvičeních se budou psát dvě písemky. Zápočet bude udělen, pokud student splní podmínky na účast ve cvičeních (příp. na domácí úlohy) a zároveň za tyto písemky obdrží více než polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2022
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
Joanna Ko, M.Sc. (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 14:00–15:50 M3,01023
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům:
- polyedrům a optimalizaci lineárních funkcí na polyedrech,
- multilineární algebře a tenzorům,
- celočíselnám a polynomiálním maticím a jejich vztahu s Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace. - Výstupy z učení
- Na konci tohoto kurzu bude student schopen:
- rozumět struktuře polyedrů a řešit úlohu lineárního programování pomocí simplexové metody;
- počítat s tenzory v souřadnicích i bez nich;
- nalézt Smithův normální tvar matice a interpretovat jej, zejména z něj odvodit Jordanův kanonický tvar - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru.
- Polyedrální kužely a polyedry: různé definice a jejich porovnání, Farkasovo lemma, stěny polyedrů, úloha lineárního programování, dualita v lineárním programování, simplexová metoda
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Celočíselné a polynomiální matice: Smithův normální tvar, souvislost s prezentací komutativních grup, klasifikace konečně generovaných komutativních grup, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Pro připuštění k závěrečné zkoušce je nutné krom dostatečné účasti na cvičení (max 3 neúčasti; účast bude doplněna odevzdáváním domácích úloh v případě distanční výuky) také dosáhnout celkově více než poloviny bodů ze dvou písemek, které se budou psát během semestru ve cvičeních.
Závěrečná zkouška se sestává z písemné a ústní části. Z písemné části je potřeba získat aspoň 50% bodů. V případě ukončení předmětu kolokviem budou studenti pouze psát písemnou část. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~koren
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů.
Na cvičeních se budou psát dvě písemky. Zápočet bude udělen, pokud student splní podmínky na účast ve cvičeních (příp. na domácí úlohy) a zároveň za tyto písemky obdrží více než polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2021
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 12:00–13:50 M5,01013
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům:
- polyedrům a optimalizaci lineárních funkcí na polyedrech,
- multilineární algebře a tenzorům,
- celočíselnám a polynomiálním maticím a jejich vztahu s Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace. - Výstupy z učení
- Na konci tohoto kurzu bude student schopen:
- rozumět struktuře polyedrů a řešit úlohu lineárního programování pomocí simplexové metody;
- počítat s tenzory v souřadnicích i bez nich;
- nalézt Smithův normální tvar matice a interpretovat jej, zejména z něj odvodit Jordanův kanonický tvar - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru.
- Polyedrální kužely a polyedry: různé definice a jejich porovnání, Farkasovo lemma, stěny polyedrů, úloha lineárního programování, dualita v lineárním programování, simplexová metoda
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Celočíselné a polynomiální matice: Smithův normální tvar, souvislost s prezentací komutativních grup, klasifikace konečně generovaných komutativních grup, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Pro připuštění k závěrečné zkoušce je nutné krom dostatečné účasti na cvičení (max 3 neúčasti; účast bude doplněna odevzdáváním domácích úloh v případě distanční výuky) také dosáhnout celkově více než poloviny bodů ze dvou písemek, které se budou psát během semestru ve cvičeních.
Závěrečná zkouška se sestává z písemné a ústní části. Z písemné části je potřeba získat aspoň 50% bodů. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~koren
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů.
Na cvičeních se budou psát dvě písemky. Zápočet bude udělen, pokud student splní podmínky na účast ve cvičeních (příp. na domácí úlohy) a zároveň za tyto písemky obdrží více než polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2020
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 8:00–9:50 M6,01011
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům:
- polyedrům a optimalizaci lineárních funkcí na polyedrech,
- multilineární algebře a tenzorům,
- celočíselnám a polynomiálním maticím a jejich vztahu s Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace. - Výstupy z učení
- Na konci tohoto kurzu bude student schopen:
- rozumět struktuře polyedrů a řešit úlohu lineárního programování pomocí simplexové metody;
- počítat s tenzory v souřadnicích i bez nich;
- nalézt Smithův normální tvar matice a interpretovat jej, zejména z něj odvodit Jordanův kanonický tvar - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru.
- Polyedrální kužely a polyedry: různé definice a jejich porovnání, Farkasovo lemma, stěny polyedrů, úloha lineárního programování, dualita v lineárním programování, simplexová metoda
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Celočíselné a polynomiální matice: Smithův normální tvar, souvislost s prezentací komutativních grup, klasifikace konečně generovaných komutativních grup, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M, Vokřínek L: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~koren
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutné krom dostatečné účasti na cvičení - max 3 neúčasti (účast bude nahrazena odevzdáním domácích úloh v případě distanční výuky) také dosáhnout celkově více než poloviny bodů ze dvou písemek, ketré se budou psát během semestru ve cvičeních.
Zkouška se sestává z písemné a ústní části.
-----
Upřesnění z 30.12.:
Závěrečná zkouška proběhne v prezenční formě, pokud to bude možné zaručit pro všechny zkouškové termíny, v opačném případě proběhne zkouška distančně (takže bohužel spíš počítám s druhou variantou). Zkouška bude sestávat z písemné části (cca 50% teoretičtějších příkladů a 50% praktičtějších příkladů), na kterou bude potřeba získat alespoň 50% bodů, a z ústní části, která bude mít zásadní vliv na udělenou známku. Obsahově bude zkouška čerpat z látky probrané na cvičeních a přednáškách.
V případě distanční formy bude zadání písemné části vygenerované prostřednictvím odpovědníku v ISu a jeho řešení bude potřeba vypracovat včetně postupu, nafotit/naskenovat a nahrát do odevzdávárny v ISu v rámci časového limitu. Ústní část pak proběhne ve formě videohovoru - přípravy mi pošlete naskenované a budeme o nich diskutovat. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~koren
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů.
Na cvičeních se budou psát dvě písemky. Zápočet bude udělen, pokud student splní podmínky na účast ve cvičeních (příp. na domácí úlohy) a zároveň za tyto písemky obdrží více než polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2019
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 10:00–11:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům:
- kvadrikám a jejich klasifikaci,
- multilineární algebře a tenzorům,
- celočíselnám a polynomiálním maticím a jejich vztahu s Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace. - Výstupy z učení
- Na konci tohoto kurzu bude student schopen:
- rozumět souvislosti mezi bilineárními formami a geometrií kvadrik;
- počítat invarianty kvadrik a odvozovat jejich geometrické vlastnosti;
- počítat s tenzory v souřadnicích i bez nich;
- nalézt Smithův normální tvar matice a interpretovat jej, zejména z něj odvodit Jordanův kanonický tvar - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Celočíselné a polynomiální matice: Smithův normální tvar, souvislost s prezentací komutativních grup, klasifikace konečně generovaných komutativních grup, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutné krom dostatečné účasti na cvičení také dosáhnout celkově více než poloviny bodů ze dvou písemek, ketré se budou psát během semestru ve cvičení.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát dvě písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží více než polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2018
- Rozsah
- 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 17. 9. až Pá 14. 12. Po 10:00–11:50 M2,01021
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2017
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 18. 9. až Pá 15. 12. Po 8:00–9:50 M3,01023
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2016
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 19. 9. až Ne 18. 12. Po 14:00–15:50 M2,01021
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2015
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 13:00–14:50 M4,01024
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Obecná matematika (program PřF, B-MA)
- Statistika a analýza dat (program PřF, B-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2014
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 12:00–13:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2013
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 12:00–13:50 M2,01021
- Rozvrh seminárních/paralelních skupin:
M3130/02: St 12:00–13:50 M3,01023, L. Vokřínek - Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2012
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 12:00–13:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M3130/02: St 14:00–15:50 M6,01011, L. Vokřínek - Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2011
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 12:00–13:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
M3130/02: St 16:00–17:50 M5,01013, L. Vokřínek - Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Vybrané aplikace: spektrální rozklad, Mooreova-Penroseova pseudoinverze, Markovovy řetězce
- Multilineární algebra: duální vektorový prostor, duální báze, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu, objem, determinant a orientace vektorového prosotru.
- Celočíselné matice: ekvivalence, Smithův normální tvar, klasifikace konečně generovaných komutativních grup.
- Polynomiální matice: ekvivalence, Smithův normální tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- LANG, Serge. Linear Algebra. Third Edition. New York: Springer-Verlag, 1987, 296 s. ISBN 0-387-96412-6. info
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy.
Na cvičeních se budou psát dvě písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2010
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 12:00–13:50 M5,01013
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2009
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- St 12:00–13:50 M5,01013
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2008
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Po 15:00–16:50 M1,01017
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace. Na konci tohoto kurzu bude student schopen porozumět souvislosti mezi bilineárními formami a geometrií kvadrik, bude znát základy multilineární algebry a bude ovládat další způsob nalezení Jordanova kanonického tvaru.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2007
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Rozvrh
- Út 12:00–13:50 N41
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2006
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Jaroslav Hrdina, Ph.D. (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc. - Rozvrh
- Po 8:00–9:50 N21
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2005
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Jaroslav Hrdina, Ph.D. (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc. - Rozvrh
- Út 13:00–14:50 UP2
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2004
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Jaroslav Hrdina, Ph.D. (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc. - Rozvrh
- Út 13:00–14:50 N41
- Rozvrh seminárních/paralelních skupin:
M3130/02: St 14:00–15:50 UP2, M. Čadek - Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Statistika a analýza dat profesní (program PřF, B-AM)
- Statistika a analýza dat (program PřF, B-AM)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2003
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
Mgr. Richard Lastovecki (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc. - Rozvrh seminárních/paralelních skupin
- M3130/01: Rozvrh nebyl do ISu vložen. M. Čadek
M3130/02: Rozvrh nebyl do ISu vložen. R. Lastovecki - Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2002
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
prof. RNDr. Jan Paseka, CSc. (přednášející) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc. - Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře je věnována dvěma již obtížnějším tématům: struktuře endomorfismů vektorových prostorů (včetně Jordanova kanonického tvaru) a multilineární algebře. Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic, multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Geometrie lineárních endomorfismů: vlastní čísla, kořenové podprostory, nilpotentní a cyklické endomorfismy, Jordanův kanonický tvar. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem. Dualita: duální vektorový prostor, duální báze, duální zobrazení. Multilineární algebra: tenzorový součin, ekvivalence různých definic, vnější a symetrický souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Literatura
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní.
- Informace učitele
- http://www.math.muni.cz/~cadek
Písemná zkouška má početní a ústní část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2011 - akreditace
Údaje z období podzim 2011 - akreditace se nezveřejňují
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- M2110 Lineární algebra a geom. II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2010 - akreditace
- Rozsah
- 2/2. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. Lukáš Vokřínek, PhD. (přednášející)
- Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii
je věnována třem základním tématům: kvadrikám a jejich klasifikaci,
multilineární algebře a souvislosti mezi polynomiálními maticemi
a Jordanovým kanonickým tvarem.
Na prvé téma navazují přednášky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatňuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
Na konci tohoto kurzu bude student schopen:
*rozumět souvislosti mezi bilineárními formami a geometrií kvadrik
*odvozovat geometrické vlastnosti kvadrik
*počítat s tenzory v souřadnicích i bez nich
*ovládat další způsob nalezení Jordanova kanonického tvaru - Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace.
- Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik.
- Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik.
- Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu.
- Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Výukové metody
- Přednášky a cvičení.
- Metody hodnocení
- Ke zkoušce je nutný zápočet ze cvičení, kde se budou psát během semestru dvě písemky. Je potřeba dosáhnout celkově alespoň poloviny bodů.
Zkouška se sestává z písemné a ústní části. - Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních se budou psát tři písemky. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
M3130 Lineární algebra a geometrie III
Přírodovědecká fakultapodzim 2007 - akreditace
- Rozsah
- 2/2. 4 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- doc. RNDr. Martin Čadek, CSc. (přednášející)
doc. Mgr. Jaroslav Hrdina, Ph.D. (cvičící) - Garance
- doc. RNDr. Martin Čadek, CSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Kontaktní osoba: doc. RNDr. Martin Čadek, CSc. - Předpoklady
- M2110 Lineární algebra II
Znalost základních pojmů lineární algebry, včetně vlastních čísel a vektorů, znalost bilineárních a kvadratických forem.. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Matematika (program PřF, M-MA)
- Cíle předmětu
- Třetí ze serie přednášek o lineární algebře a geometrii je věnována třem základním tématům: kvadrikám a jejich klasifikaci, multilineární algebře a souvislosti mezi polynomiálními maticemi a Jordanovým kanonickým tvarem. Na prvé téma navazují přednašky o geometrii křivek a ploch, Jordanův kanonický tvar se uplatńuje při řešení soustav lineárních diferenciálních rovnic a multilineární algebra je nezbytná pro diferenciální geometrii, fyzikální a technické aplikace.
- Osnova
- Afinní a projektivní prostory: definice afinního a projektivního prostoru, podprostory, afinita a kolineace, projektivní rozšíření afinního prostoru, komplexifikace. Kvadriky v afinním a projektivním prostoru: definice nadkvadrik, nadkvadriky a bilinearní formy, klasifikace nakvadrik v projektivním prostoru, polárně sdružené body vzhledem k nadkvadrice, tečné nadroviny, středy a asymptoty, afinní klasifikace kuželoseček a kvadrik. Metrické vlastnosti kvadrik: hlavní směry, hlavní nadroviny, metrická klasifikace kuželoseček a kvadrik. Multilineární algebra: duální vektorový prostor, duální báze, duální zobrazení, tenzorový součin, ekvivalence různých definic, vnější a symetrický součin, souřadnice tenzorů, funktor Hom a jeho vztah k tenzorovému součinu. Polynomiální matice: ekvivalence, kanonický tvar, souvislost s charakteristickým a minimálním polynomem a s Jordanovým kanonickým tvarem.
- Literatura
- Čadek M: Lineární algebra a geometrie III, elektronický učební text PřF MU Brno, www.math.muni.cz/~cadek
- Slovák J.: Lineární algebra, elektronický učební text PřF MU Brno, www.math.muni.cz/~slovak
- Kostrikin A., Manin Yu.: Linear algebra and geometry, Gordon and Breach Science Publishers, 1997
- Metody hodnocení
- Výuka: přednáška a klasická cvičení. Zkouška: písemná a ústní. Ke zkoušce je nutný zápočet ze cvičení.
- Navazující předměty
- Informace učitele
- http://www.math.muni.cz/~cadek
Ke zkoušce je nutný zápočet ze cvičení. Zkouška je písemná a ústní. Písemná zkouška má početní a teoretickou část. Při ústní zkoušce se bude ověřovat porozumění přednesené látce a schopnost ji demonstrovat na jednoduchých příkladech. Nutná je znalost základních pojmů lineární algebry z předchozích semestrů: vektorový prostor, báze, souřadnice, lineární zobrazení, matice lineárního zobrazení, matice přechodu, vlastní čísla a vektory, bilineární a kvadratické formy. Na cvičeních budou zadávány přiklady za domácí ulohu. Z této domácí úlohy se bude na príštím cvičení psát krátká písemka. Zápočet bude udělen, pokud student za tyto písemky obdrží aspoň polovinu z udělených bodů. Studenti, kteří dosáhnou horšího výsledku, budou psát náhradni zápočtovou písemku. Na zápočet musí získat aspoň polovinu bodů. - Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
- Statistika zápisu (nejnovější)