M1100 Matematická analýza I

Přírodovědecká fakulta
podzim 2012
Rozsah
4/2/0. 6 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk.
Vyučující
prof. RNDr. Roman Šimon Hilscher, DSc. (přednášející)
Mgr. Pavla Musilová, Ph.D. (cvičící)
doc. RNDr. Michal Veselý, Ph.D. (cvičící)
Garance
prof. RNDr. Ondřej Došlý, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Út 10:00–11:50 M1,01017, St 10:00–11:50 M1,01017
  • Rozvrh seminárních/paralelních skupin:
M1100/01: Út 16:00–17:50 M4,01024, M. Veselý
M1100/02: St 16:00–17:50 M6,01011, M. Veselý
M1100/03: Čt 12:00–13:50 F4,03017, P. Musilová
Předpoklady
! M1101 Matematická analýza I && !NOW( M1101 Matematická analýza I )
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Jedná se o vstupní kurs matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu funkcí jedné proměnné. Výklad je koncipován tak, aby se srovnaly nestejné vstupní znalosti, se kterými přicházejí studenti ze středních škol. Studenti se budou orientovat v základních teoretických a praktických metodách diferenciálního a integrálního počtu funkcí jedné proměnné a budou schopni aplikovat tyto metody na praktické úlohy.
Osnova
  • Úvod: Reálná čísla a jejich základní vlastnosti, obecné vlastnosti reálných funkcí, elementární funkce.
  • Funkce a posloupnosti: Posloupnosti reálných čísel.
  • Limita a spojitost funkcí, vlastnosti spojitých funkcí.
  • Derivace funkce: základní pravidla, vlastnosti derivace, geometrický význam derivace, Taylorův vzorec, vyšetřování průběhu funkcí, křivky v rovině.
  • Neurčitý integrál: primitivní funkce a její vlastnosti, základní integrační metody, speciální integrační postupy (integrály s goniometrickými, iracionálními a dalšími typy elementárních funkcí).
  • Riemannův integrál a jeho vlastnosti: konstrukce Riemannova integrálu a jeho výpočet (Newton-Leibnizova formule), aplikace integrálu (plocha rovinných obrazců, délka křivky, objem a povrch pláště rotačního tělesa).
Literatura
  • DOŠLÁ, Zuzana a Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné. Brno: Masarykova Univerzita v Brně, 2003, 215 s. skriptum. ISBN 80-210-3121-2. info
  • DOŠLÝ, Ondřej a Petr ZEMÁNEK. Integrální počet v R. 1. vydání. Brno: Masarykova univerzita, 2011, 222 s. ISBN 978-80-210-5635-0. info
  • NOVÁK, Vítězslav. Integrální počet funkcí jedné proměnné. Vyd. 1. Brno: Rektorát UJEP, 1980, 89 s. info
  • DEMIDOVIČ, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 1. vyd. Havlíčkův Brod: Fragment, 2003, 460 s. ISBN 8072005871. info
  • BABULA, Kamil. Protipříklady v matematické analýze. Brno: Masarykova univerzita, 2008, 44 s. Bakalářská práce. info
  • NOVÁK, Vítězslav. Diferenciální počet v R. Brno: Masarykova univerzita Brno, 1997, 250 s. ISBN 80-210-1561-6. info
  • Diferenciální počet. Edited by Vojtěch Jarník. Vyd. 6. nezměn. Praha: Academia, 1974, 391 s. URL info
  • Integrální počet. Edited by Vojtěch Jarník. Vyd. 5. nezměn. Praha: Academia, 1974, 243 s. URL info
Výukové metody
Přednášky o teorii s ilustrujícími řešenými příklady. Cvičení zaměřené na zvládnutí teoretických a praktických početních úloh.
Metody hodnocení
Dvouhodinová písemka a ústní část zkoušky. Výsledky ze cvičení se částečně přenášejí do zkoušky.
Informace učitele
Výsledky ze cvičení se budou částečně přenášet do hodnocení zkoušky. Zkouška bude mít písemnou a ústní část.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 1999, podzim 2010 - akreditace, podzim 2000, podzim 2001, podzim 2002, podzim 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2023, podzim 2024.